\qquad
\qquad

SOLUTIONS: Midterm \#2

PROBLEM ONE: (40 points)

Use nodal analysis to find all the currents and voltages in this circuit.
Label your current and voltage definitions clearly!!!

At node 1 we get the equation,

$$
\begin{align*}
i_{1}+i_{3} & =i_{2} \tag{1}\\
\left(\frac{30 V-V_{0}}{1 \Omega}\right)+\left(\frac{\left(V_{1}+2 V_{0}\right)-V_{0}}{4 \Omega}\right) & =\left(\frac{V_{0}}{2 \Omega}\right) \\
\left(\frac{30 V}{1 \Omega}\right)+\left(\frac{V_{1}}{4 \Omega}\right) & =\left(\frac{5 V_{0}}{4 \Omega}\right) \tag{2}
\end{align*}
$$

At node 2 we get the equation,

$$
\begin{align*}
i_{4}+i_{3} & =i_{5} \tag{3}\\
\left(\frac{V_{1}}{16 \Omega}\right)+\left(\frac{\left(V_{1}+2 V_{0}\right)-V_{0}}{4 \Omega}\right) & =3 A \tag{2}\\
\left(\frac{5 V_{1}}{16 \Omega}\right)+\left(\frac{V_{0}}{4 \Omega}\right) & =3 A \tag{4}
\end{align*}
$$

With two equations, (1) and (2), and two variables, V_{0} and V_{1}, we can solve for their values and get $\mathrm{V}_{0}=648 / 29=22.3 \mathrm{~V}$ and $\mathrm{V}_{1}=-240 / 29=-8.28 \mathrm{~V}$. Solving for the currents we get
\qquad
\qquad

Professor Peter Burke

$$
\begin{align*}
& i_{1}=\left(\frac{30 V-V_{0}}{1 \Omega}\right)=\frac{222}{29}=7.655 \mathrm{~A} \\
& i_{2}=\left(\frac{V_{0}}{2 \Omega}\right)=\frac{324}{29}=11.15 \mathrm{~A} \\
& i_{3}=\left(\frac{\left(V_{1}+2 V_{0}\right)-V_{0}}{4 \Omega}\right)=\frac{102}{29}=3.45 \mathrm{~A} \\
& i_{4}=\left(\frac{V_{1}}{16 \Omega}\right)=-\frac{15}{29}=-0.53 \mathrm{~A} \\
& i_{5}=3 \mathrm{~A} \tag{3}
\end{align*}
$$

Problem 1 : Grading Criteria:

Maximum points:
$6 p$ ts for correctly setting up the node equation (1)
6 pts for correctly setting up the node equation (3)
4pts for i_{1} (full credit if $7.0<i_{1}<8.1$)
4pts for i_{2} (full credit if $10.0<i_{2}<12.2$)
4 pts for i_{3} (full credit if $3.1<i_{3}<3.8$)
4 pts for i_{4} (full credit if $-0.58<i_{4}<-0.48$)
4 pts for i_{5}
Partial Credit for i's above
3pts partial credit for correct equation but wrong numerical answer
1 pts partial credit for a mistake in the equation
4 pts for V_{0} (full credit if $20<V_{0}<24$ and correct equation)
2 pts partial credit fair attempt at solving
4pts for V_{1} (full credit if $7.5<V_{1}<9.1$ and correct equation)
2 pts partial credit fair attempt at solving

EECS70A Spring 2009 Midterm Exam \#2
5/14/2009 11:00 to 12:20 pm
Professor Peter Burke
PROBLEM ONE SPACE FOR WORK:

PROBLEM TWO (30 points):

An attenuator is an interface circuit that reduces the voltage level without changing the output resistance.
(a) By specifying \boldsymbol{R}_{s} and $\boldsymbol{R}_{\boldsymbol{p}}$ of the interface circuit in the figure below, design an attenuator that will meet the following requirements:
$\frac{V_{o}}{V_{g}}=0.125, \quad R_{e q}=R_{\mathrm{Th}}=R_{g}=100 \Omega . \quad$ (Note: $0.125=1 / 8$).
(b) Using the interface designed in part (a), calculate the current through a load of $\boldsymbol{R}_{\boldsymbol{L}}=50 \Omega$ when $V_{g}=12 \mathrm{~V}$.
(c) What value of $\boldsymbol{R}_{\boldsymbol{L}}$ achieves maximum power delivered to the load? Express your answer in Ω. In this case, what is the power (in Watts) delivered to the load?

Solution:

(a)

Finding the Thevenin equivalent of this circuit.

The equation for R_{th} is the equivalent resistance seen looking into the load-port when the voltage source, V_{g}, is set to zero. Also, it is given that $\mathrm{R}_{\mathrm{th}}=100 \Omega$ thus giving

$$
\begin{equation*}
R_{t h}=\frac{\left(R_{g}+R_{s}\right) R_{p}}{\left(R_{g}+R_{s}\right)+R_{p}}=\frac{\left(100 \Omega+R_{s}\right) R_{p}}{\left(100 \Omega+R_{s}\right)+R_{p}}=100 \Omega \tag{1}
\end{equation*}
$$

The Thevenin equivalent voltage can be shown to be a voltage divider

$$
V_{t h}=V_{g} \frac{R_{p}}{\left(R_{g}+R_{s}\right)+R_{p}}=V_{g} \frac{R_{p}}{\left(100 \Omega+R_{s}\right)+R_{p}}
$$

\qquad
5/14/2009 11:00 to 12:20 pm
ID no.: \qquad
Professor Peter Burke

$$
\begin{equation*}
\frac{V_{\text {th }}}{V_{g}}=0.125=\frac{R_{p}}{\left(100 \Omega+R_{s}\right)+R_{p}} \tag{2}
\end{equation*}
$$

Now we have two equations, (1) and (2), and two unknown variables, R_{s} and R_{p} which we can solve for to get $R_{p}=800 / 7=114.28 \Omega$ and $R_{s}=700 \Omega$.
(b)

As given, $\mathrm{R}_{\mathrm{L}}=50, \mathrm{~V}_{\mathrm{g}}=12 \mathrm{~V}$, and $\mathrm{V}_{\text {th }}=0.125 \mathrm{~V}_{\mathrm{g}}, \mathrm{R}_{\text {th }}=100 \Omega$ we get

$$
\begin{equation*}
i=\frac{V_{t h}}{R_{t h}+R_{L}}=\frac{0.125(12 \mathrm{~V})}{100 \Omega+50 \Omega}=0.01 \mathrm{~A} \tag{3}
\end{equation*}
$$

(c)

For maximum power delivery to the load resister, $\mathrm{R}_{\mathrm{L}, \max }=\mathrm{R}_{\mathrm{th}}=100 \Omega$, (see pg 151 in textbook) and the corresponding power delivered to the load is

$$
\begin{equation*}
P_{\max }=\frac{V_{t h}^{2}}{4 R_{t h}}=\frac{(0.125(12 \mathrm{~V}))^{2}}{4(100 \Omega)}=0.005625 \mathrm{~W} \tag{4}
\end{equation*}
$$

Problem 2: Grading Criteria:

a) 16pts: 5 pts for eq (1) $\mathrm{R}_{\mathrm{th}}, 5 \mathrm{pts}$ for eq (2) $\mathrm{V}_{\mathrm{th}}, 3$ pts for R_{s} (full credit if $630<R_{S}<770$), and 3pts for R_{p} (full credit if $103<R_{p}<125$).
a. 2 pts credit for fair attempt at $\mathrm{R}_{\mathrm{th}}, \mathrm{V}_{\text {th }}$
b. 1pt partial credit for fair attempt at R_{s} and R_{p}
b) 6 pts for the correct current though the load (full credit if $0.009<i<0.011$)
a. 2 pts- 3 pts partial credit for fair attempt at load current
c) 8pts: 4pts for correct $\mathrm{R}_{\mathrm{L}, \max }$ and 4 pts for correct $\mathrm{P}_{\max }$ (full credit if $0.0051<P_{\max }<$ 0.0061)
a. 2 pts partial credit for fair attempt at $\mathrm{P}_{\max }$
b. 2 pts partial credit for describing how to find $R_{L, \max }$ for max power using derivates.

EECS70A Spring 2009 Midterm Exam \#2
5/14/2009 11:00 to 12:20 pm
Professor Peter Burke

PROBLEM THREE (30 points):

Consider the following inverting Op Amp circuit. The circuit model for the non-ideal Op Amp is also included below. The boxed region is to be represented using Thevenin equivalent circuit. Find an algebraic expression for $V_{t h}$ and $R_{t h}$ in terms of $A, V_{s}, R_{1}, R_{2}, R_{i}, R_{0}$. Then find numerical result for V_{th} and R_{th} in terms of V_{s}. Hint: Replace the op-amp by its equivalent model, and then analyze the resultant circuit. Show your result becomes the value we had in class for the limit of an ideal op-amp. (What does ideal op-amp mean?)

$\left(\mathrm{R}_{\mathrm{i}}=1 \mathrm{M} \Omega, \mathrm{R}_{\mathrm{o}}=50 \Omega\right)$

Solution:

Figure 1: Circuit diagram for solving $\mathbf{V}_{\text {th }}$

First, find $V_{\text {th }}$
\qquad
\qquad

$$
\begin{gather*}
i_{1}+i_{2}=i_{3} \\
\left(\frac{v_{s}-V_{x}}{R_{1}}\right)+\frac{\left(\left(-A V_{x}\right)-V_{x}\right)}{R_{0}+R_{2}}=\frac{V_{x}}{R_{i}} \\
\frac{V_{s}}{R_{1}}=V_{x}\left(\frac{1}{R_{1}}+\frac{A+1}{R_{0}+R_{2}}+\frac{1}{R_{i}}\right) \\
\rightarrow V_{x}=\left(\frac{V_{s}}{\left(1+\frac{R_{1}(A+1)}{R_{0}+R_{2}}+\frac{R_{1}}{R_{i}}\right)}\right) \tag{1}
\end{gather*}
$$

And we can write the equation,

$$
\begin{align*}
& V_{t h}=-A V_{x}-i_{2} R_{0} \\
& V_{t h}=-A V_{x}-A V_{x}-V_{x} R_{0}+R_{2} R_{0} \\
& V_{\text {th }}=V_{x}\left(-A+\left(\frac{A+1}{R_{0}+R_{2}}\right) R_{0}\right) \\
& V_{\text {th }}=\left(\frac{V_{s}}{\left(1+\frac{R_{1}(A+1)}{R_{0}+R_{2}}+\frac{R_{1}}{R_{i}}\right)}\right)\left(-A+\left(\frac{A+1}{R_{0}+R_{2}}\right) R_{0}\right) \\
& V_{\text {th }}=V_{s}\left(\frac{\left(-A+\left(\frac{A+1}{R_{0}+R_{2}}\right) R_{0}\right)}{\left(1+\frac{R_{1}(A-1)}{R_{0}+R_{2}}+\frac{R_{1}}{R_{i}}\right)}\right) \\
& V_{\text {th }} \approx-\frac{R_{2}}{R_{1}} V_{s}=-2 V_{s} \tag{2}
\end{align*}
$$

Finding $\mathrm{R}_{\text {th }}$, since we have a dependent voltage source we apply an external voltage, v_{0}, and remove the independent voltage source to get $R_{t h}=v_{0} / i_{0}$.

Figure 2 : Circuit diagram for solving for Rth using meth analysis. From a) to b) we have redrawn the circuit to improve the visualization of it.

EECS70A Spring 2009 Midterm Exam \#2
5/14/2009 11:00 to $12: 20 \mathrm{pm}$
Professor Peter Burke
First looking at loop i_{0} and use $v_{x}=i_{1}\left(R_{i} \| R_{1}\right)$ to get,

$$
\begin{align*}
& v_{0}-\left(i_{0}-i_{1}\right) R_{0}=-v_{x} A \\
& v_{0}-\left(i_{0}-i_{1}\right) R_{0}=-i_{1}\left(R_{i} \| R_{1}\right) A \\
& \Rightarrow v_{0}=i_{0} R_{0}-i_{1}\left(R_{0}+\left(R_{i} \| R_{1}\right) A\right) \tag{3}
\end{align*}
$$

And for loop i_{1} and again using $v_{x}=i_{1}\left(R_{i} \| R_{1}\right)$ we get,

$$
\begin{align*}
-v_{x} A-\left(i_{1}-i_{0}\right) R_{0}-i_{1} R_{2}-i_{1}\left(R_{i} \| R_{1}\right) & =0 \\
-v_{x} A+i_{0}\left(R_{0}\right)-i_{1}\left(R_{0}+R_{2}+R_{i} \| R_{1}\right) & =0 \\
-\left(i_{1}\left(R_{i} \| R_{1}\right)\right) A+i_{0}\left(R_{0}\right)-i_{1}\left(R_{0}+R_{2}+R_{i} \| R_{1}\right) & =0 \\
i_{0}\left(R_{0}\right)-i_{1}\left(R_{0}+R_{2}+R_{i} \| R_{1}(1+A)\right) & =0 \tag{4}
\end{align*}
$$

Using (4) to eliminate i_{1} in (3) we get,

$$
\begin{equation*}
v_{0}=i_{0} R_{0}-\left(\frac{i_{0}\left(R_{0}\right)}{\left(R_{0}+R_{2}+R_{i} \| R_{1}(1+A)\right)}\right)\left(R_{0}+\left(R_{i} \| R_{1}\right) A\right) \tag{5}
\end{equation*}
$$

Thus, $R_{t h}=v_{0} / i_{0}$,

$$
\begin{align*}
& R_{t h}=\frac{v_{0}}{i_{0}}=R_{0}\left(1-\left(\frac{\left(R_{0}+\left(R_{i} \| R_{1}\right) A\right)}{\left(R_{0}+R_{2}+R_{i} \| R_{1}(1+A)\right)}\right)\right) \tag{6}\\
& R_{t h}=R_{0}\left(\frac{R_{2}+\left(R_{i} \| R_{1}\right)}{\left(R_{0}+R_{2}+R_{i} \| R_{1}(1+A)\right)}\right) \approx \frac{R_{0}}{A} \\
& \Rightarrow R_{t h}=0.00015 \Omega
\end{align*}
$$

Alternatively, R_{th} can also be solved using nodal analysis

Using

$$
\begin{aligned}
& i_{0}=i_{1}+i_{2} \\
& i_{0}=\frac{v_{0}}{R_{2}+R_{1} \| R_{i}}+\frac{v_{0}-\left(-A v_{x}\right)}{R_{0}} \\
& i_{0}=v_{0}\left(\frac{1}{R_{2}+R_{1} \| R_{i}}+\frac{1}{R_{0}}\right)+\frac{A}{R_{0}}\left(v_{0} \frac{R_{1} \| R_{i}}{R_{1} \| R_{i}+R_{2}}\right) \\
& i_{0}=v_{0}\left(\frac{1}{R_{2}+R_{1} \| R_{i}}+\frac{1}{R_{0}}+\frac{A}{R_{0}} \frac{R_{1} \| R_{i}}{R_{1} \| R_{i}+R_{2}}\right) \\
& \Rightarrow \frac{i_{0}}{v_{0}}=\left(\frac{R_{0}+R_{2}+R_{1} \| R_{i}(1+A)}{R_{0}\left(R_{1} \| R_{i}+R_{2}\right)}\right)
\end{aligned}
$$

EECS70A Spring 2009 Midterm Exam \#2
5/14/2009 11:00 to $12: 20 \mathrm{pm}$
Professor Peter Burke

$$
\begin{aligned}
& \Rightarrow R_{t h}=\frac{v_{0}}{i_{0}}=R_{0}\left(\frac{\left(R_{1} \| R_{i}+R_{2}\right)}{R_{0}+R_{2}+R_{1} \| R_{i}(1+A)}\right) \approx \frac{R_{0}}{A} \\
& \Rightarrow R_{t h}=0.00015 \Omega
\end{aligned}
$$

Alternatively, you can short the load and find $i_{\text {short }}$ and get $\mathrm{R}_{\mathrm{th}}=\mathrm{V}_{\mathrm{th}} / \mathrm{i}_{\text {short }}$

$$
\begin{aligned}
i_{1}+i_{2}+i_{3} & =0 \\
\frac{v_{x}-v_{s}}{R_{1}}+\frac{v_{x}}{R_{i}}+\frac{v_{x}}{R_{2}} & =0 \\
v_{x}\left(\frac{1}{R_{1}}+\frac{1}{R_{i}}+\frac{1}{R_{2}}\right)-\frac{v_{s}}{R_{1}} & =0 \\
& \Rightarrow v_{x}=\frac{v_{s}}{1+\frac{R_{1}}{R_{i}}+\frac{R_{1}}{R_{2}}}
\end{aligned}
$$

At the other node the current equation is,

$$
\begin{aligned}
i_{4}+i_{s s} & =i_{3} \\
\frac{0-A v_{x}}{R_{0}}+i_{s s} & =\frac{v_{x}}{R_{2}} \\
& \Rightarrow i_{s s}=v_{x}\left(\frac{1}{R_{2}}+\frac{A}{R_{0}}\right) \\
& \Rightarrow i_{s s}=\frac{v_{s}}{1+\frac{R_{1}}{R_{i}}+\frac{R_{1}}{R_{2}}}\left(\frac{1}{R_{2}}+\frac{A}{R_{0}}\right)
\end{aligned}
$$

Since $\mathrm{R}_{\mathrm{th}}=\mathrm{V}_{\mathrm{th}} / \mathrm{i}_{\mathrm{ss}}$ we get,

$$
\begin{aligned}
& \Rightarrow R_{t h}=\frac{v_{t h}}{i_{s s}}=\frac{\left(\frac{\left(-A+\left(\frac{A+1}{R_{0}+R_{2}}\right) R_{0}\right)}{\left(1+\frac{R_{1}(A-1)}{R_{0}+R_{2}}+\frac{R_{1}}{R_{i}}\right)}\right)}{\frac{\left(\frac{1}{R_{2}}+\frac{A}{R_{0}}\right)}{1+\frac{R_{1}}{R_{i}}+\frac{R_{1}}{R_{2}}}} \approx \frac{R_{0}}{A} \\
& \Rightarrow R_{t h}=0.00015 \Omega
\end{aligned}
$$

EECS70A Spring 2009 Midterm Exam \#2
5/14/2009 11:00 to $12: 20 \mathrm{pm}$
Name:
ID no.:
\qquad

Professor Peter Burke
Assuming an ideal op-amp we get $V_{t h}=-\left(R_{2} / R_{1}\right) V_{s}=-2 V_{s}$ and $\mathrm{R}_{\text {th }}=0 \Omega$ which is approximately what was derived above. Other characteristics of an ideal op-amp are $\mathrm{R}_{0}=0, \mathrm{R}_{\mathrm{i}}=\infty, \mathrm{A}=\infty$.

Problem 3: Grading Criteria:

6 pts for drawing the circuit diagram
8pts for R_{th} :

- 4 pts partial credit for fair attempt at $R_{t h}$ and is given as a function of $R_{1}, R_{2}, R_{i}, R_{0}$ OR
2 pts partial credit for fair attempt at $R_{t h}$ and is given as a function of R_{1}, R_{2}
8pts for $V_{\text {th }}$:
4pts partial credit for fair attempt at $V_{\text {th }}$ and is given as a function of $R_{1}, R_{2}, R_{i}, R_{0}, A$, Vs

OR

- 2pts partial credit for fair attempt at $V_{\text {th }}$ and is given as a function of $R_{1}, R_{2} . V_{s}$

5pts for comparing to ideal op-amp, $\mathrm{V}_{0}=-\mathrm{R}_{2} / \mathrm{R}_{1} \mathrm{~V}_{\mathrm{s}}=-2 \mathrm{~V}_{\mathrm{s}}$.

- 3 pts if you write $\mathrm{V}_{0}=2 \mathrm{~V}_{\mathrm{s}}$

3 pts for saying $R_{0}=0, R_{i}=\infty, A=\infty$.

