Name:_____ ID no.:

5/14/2009 11:00 to 12:20 pm Professor Peter Burke

SOLUTIONS:	Midterm #2
------------	------------

PROBLEM ONE: (40 points)

Use nodal analysis to find all the currents and voltages in this circuit. Label your current and voltage definitions clearly!!!

At node 1 we get the equation,

$$i_{1} + i_{3} = i_{2}$$

$$\left(\frac{30V - V_{0}}{1\Omega}\right) + \left(\frac{(V_{1} + 2V_{0}) - V_{0}}{4\Omega}\right) = \left(\frac{V_{0}}{2\Omega}\right)$$

$$\left(\frac{30V}{1\Omega}\right) + \left(\frac{V_{1}}{4\Omega}\right) = \left(\frac{5V_{0}}{4\Omega}\right)$$

$$(2)$$

At node 2 we get the equation,

$$i_4 + i_3 = i_5$$

$$\left(\frac{V_1}{16\Omega}\right) + \left(\frac{(V_1 + 2V_0) - V_0}{4\Omega}\right) = 3A$$

$$\left(\frac{5V_1}{16\Omega}\right) + \left(\frac{V_0}{4\Omega}\right) = 3A$$
(4)

With two equations, (1) and (2), and two variables, V_0 and V_1 , we can solve for their values and get $V_0=648/29=22.3V$ and $V_1=-240/29=-8.28V$. Solving for the currents we get

(2)

Name:_____

5/14/2009 11:00 to 12:20 pm Professor Peter Burke ID no.:_____

$$i_{1} = \left(\frac{30V - V_{0}}{1\Omega}\right) = \frac{222}{29} = 7.655A$$

$$i_{2} = \left(\frac{V_{0}}{2\Omega}\right) = \frac{324}{29} = 11.15A$$

$$i_{3} = \left(\frac{(V_{1} + 2V_{0}) - V_{0}}{4\Omega}\right) = \frac{102}{29} = 3.45A$$

$$i_{4} = \left(\frac{V_{1}}{16\Omega}\right) = -\frac{15}{29} = -0.53A$$

$$i_{5} = 3A$$
(3)

Problem 1 : Grading Criteria:

Maximum points: 6pts for correctly setting up the node equation (1) 6pts for correctly setting up the node equation (3) 4pts for i₁ (full credit if $7.0 < i_1 < 8.1$) 4pts for i₂ (full credit if $10.0 < i_2 < 12.2$) 4pts for i₃ (full credit if $3.1 < i_3 < 3.8$) 4pts for i₄ (full credit if $-0.58 < i_4 < -0.48$) 4pts for i₅ Partial Credit for i's above 3pts partial credit for correct equation but wrong numerical answer 1pts partial credit for a mistake in the equation 4pts for V₀ (full credit if $20 < V_0 < 24$ and correct equation) 2pts partial credit fair attempt at solving 4pts for V₁ (full credit if $7.5 < V_1 < 9.1$ and correct equation) 2pts partial credit fair attempt at solving

ID no.:

Name:

5/14/2009 11:00 to 12:20 pm Professor Peter Burke

PROBLEM ONE SPACE FOR WORK:

PROBLEM TWO (30 points):

An attenuator is an interface circuit that reduces the voltage level without changing the output resistance.

(a) By specifying R_s and R_p of the interface circuit in the figure below, design an attenuator that will meet the following requirements:

$$\frac{V_o}{V_g} = 0.125, \quad R_{eq} = R_{\text{Th}} = R_g = 100\Omega.$$
 (Note: 0.125 = 1/8).

- (b) Using the interface designed in part (a), calculate the current through a load of $R_L = 50 \Omega$ when $V_g = 12$ V.
- (c) What value of R_L achieves maximum power delivered to the load? Express your answer in Ω . In this case, what is the power (in Watts) delivered to the load?

Solution:

(a)

Finding the Thevenin equivalent of this circuit.

The equation for R_{th} is the equivalent resistance seen looking into the load-port when the voltage source, V_g , is set to zero. Also, it is given that R_{th} =100 Ω thus giving

$$R_{th} = \frac{(R_g + R_s)R_p}{(R_g + R_s) + R_p} = \frac{(100\Omega + R_s)R_p}{(100\Omega + R_s) + R_p} = 100\Omega$$
(1)

The Thevenin equivalent voltage can be shown to be a voltage divider

$$V_{th} = V_g \frac{R_p}{(R_g + R_s) + R_p} = V_g \frac{R_p}{(100\Omega + R_s) + R_p}$$

Name:

5/14/2009 11:00 to 12:20 pm Professor Peter Burke ID no.:

$$\frac{V_{th}}{V_g} = 0.125 = \frac{R_p}{(100\Omega + R_s) + R_p}$$
(2)

Now we have two equations, (1) and (2), and two unknown variables, R_s and R_p which we can solve for to get $R_p=800/7=114.28\Omega$ and $R_s=700\Omega$.

(b)

As given, $R_L{=}50,\,V_g{=}12V,$ and $V_{th}{=}0.125V_g$, $R_{th}{=}100\Omega$ we get

$$i = \frac{V_{th}}{R_{th} + R_L} = \frac{0.125(12V)}{100\Omega + 50\Omega} = 0.01A$$
(3)

(c)

For maximum power delivery to the load resister, $R_{L,max}=R_{th}=100\Omega$, (see pg 151 in textbook) and the corresponding power delivered to the load is

$$P_{max} = \frac{V_{th}^2}{4R_{th}} = \frac{\left(0.125(12V)\right)^2}{4(100\Omega)} = 0.005625W$$
(4)

Problem 2: Grading Criteria:

- a) 16pts: 5pts for eq (1) R_{th}, 5pts for eq (2) V_{th}, 3pts for R_s (full credit if $630 < R_s < 770$), and 3pts for R_p (full credit if $103 < R_p < 125$).
 - a. 2pts credit for fair attempt at R_{th}, V_{th}
 - b. 1pt partial credit for fair attempt at R_s and R_p
- b) 6pts for the correct current though the load (full credit if 0.009 < i < 0.011)
 - a. 2pts-3pts partial credit for fair attempt at load current
- c) 8pts: 4pts for correct $R_{L,max}$ and 4pts for correct P_{max} (full credit if 0.0051 < P_{max} < 0.0061)
 - a. 2pts partial credit for fair attempt at P_{max}
 - b. 2pts partial credit for describing how to find R_{L,max} for max power using derivates.

Name:

ID no.:

5/14/2009 11:00 to 12:20 pm Professor Peter Burke **PROBLEM THREE (30 points):**

PROBLEM THREE (30 points): Consider the following inverting Op Amp circuit. The circuit model for the non-ideal Op Amp is also included below. The boxed region is to be represented using Thevenin equivalent circuit.

Find an algebraic expression for V_{th} and R_{th} in terms of A, V_s , R_1 , R_2 , R_i , R_o . Then find numerical result for V_{th} and R_{th} in terms of V_s . Hint: Replace the op-amp by its equivalent model, and then analyze the resultant circuit. Show your result becomes the value we had in class for the limit of an ideal op-amp. (What does ideal op-amp mean?)

$$(R_i = 1 M\Omega, R_o = 50 \Omega)$$

Solution:

Figure 1: Circuit diagram for solving V_{th}

Name:

.

5/14/2009 11:00 to 12:20 pm Professor Peter Burke

ID		
ID	no.	:

$$i_{1} + i_{2} = i_{3}$$

$$\left(\frac{v_{s} - V_{x}}{R_{1}}\right) + \frac{\left((-AV_{x}) - V_{x}\right)}{R_{0} + R_{2}} = \frac{V_{x}}{R_{i}}$$

$$\frac{V_{s}}{R_{1}} = V_{x} \left(\frac{1}{R_{1}} + \frac{A + 1}{R_{0} + R_{2}} + \frac{1}{R_{i}}\right)$$

$$\rightarrow V_{x} = \left(\frac{V_{s}}{\left(1 + \frac{R_{1}(A + 1)}{R_{0} + R_{2}} + \frac{R_{1}}{R_{i}}\right)}\right)$$
(1)

And we can write the equation,

$$\begin{split} V_{th} &= -AV_{x} - i_{2}R_{0} \\ V_{th} &= -AV_{x} - AV_{x} - V_{x}R_{0} + R_{2}R_{0} \\ V_{th} &= V_{x} \left(-A + \left(\frac{A+1}{R_{0} + R_{2}} \right) R_{0} \right) \\ V_{th} &= \left(\frac{V_{s}}{\left(1 + \frac{R_{1}(A+1)}{R_{0} + R_{2}} + \frac{R_{1}}{R_{i}} \right)} \right) \left(-A + \left(\frac{A+1}{R_{0} + R_{2}} \right) R_{0} \right) \\ V_{th} &= V_{s} \left(\frac{\left(-A + \left(\frac{A+1}{R_{0} + R_{2}} \right) R_{0} \right)}{\left(1 + \frac{R_{1}(A-1)}{R_{0} + R_{2}} + \frac{R_{1}}{R_{i}} \right)} \right) \\ V_{th} &\approx -\frac{R_{2}}{R_{1}} V_{s} = -2V_{s} \end{split}$$

$$(2)$$

Finding R_{th} , since we have a dependent voltage source we apply an external voltage, v_0 , and remove the independent voltage source to get $R_{th} = v_0/i_0$.

Figure 2 : Circuit diagram for solving for Rth using meth analysis. From a) to b) we have redrawn the circuit to improve the visualization of it.

Name:_____ ID no.:_____

5/14/2009 11:00 to 12:20 pm Professor Peter Burke

First looking at loop i_0 and use $v_x = i_1(R_i \parallel R_1)$ to get,

$$v_{0} - (i_{0} - i_{1})R_{0} = -v_{x}A$$

$$v_{0} - (i_{0} - i_{1})R_{0} = -i_{1}(R_{i} \parallel R_{1})A$$

$$\Rightarrow v_{0} = i_{0}R_{0} - i_{1}(R_{0} + (R_{i} \parallel R_{1})A)$$
(3)

And for loop i_1 and again using $v_x = i_1(R_i \parallel R_1)$ we get,

$$-v_x A - (i_1 - i_0) R_0 - i_1 R_2 - i_1 (R_i \parallel R_1) = 0 -v_x A + i_0 (R_0) - i_1 (R_0 + R_2 + R_i \parallel R_1) = 0 - (i_1 (R_i \parallel R_1)) A + i_0 (R_0) - i_1 (R_0 + R_2 + R_i \parallel R_1) = 0 i_0 (R_0) - i_1 (R_0 + R_2 + R_i \parallel R_1 (1 + A)) = 0$$
(4)

Using (4) to eliminate i_1 in (3) we get,

$$v_0 = i_0 R_0 - \left(\frac{i_0(R_0)}{\left(R_0 + R_2 + R_i \parallel R_1(1+A)\right)}\right) (R_0 + (R_i \parallel R_1)A)$$
(5)

Thus, $R_{th} = v_0/i_0$,

$$R_{th} = \frac{v_0}{i_0} = R_0 \left(1 - \left(\frac{(R_0 + (R_i \parallel R_1)A)}{(R_0 + R_2 + R_i \parallel R_1(1 + A))} \right) \right)$$

$$R_{th} = R_0 \left(\frac{R_2 + (R_i \parallel R_1)}{(R_0 + R_2 + R_i \parallel R_1(1 + A))} \right) \approx \frac{R_0}{A}$$

$$\Rightarrow R_{th} = 0.00015\Omega$$
(6)

、

Alternatively, R_{th} can also be solved using nodal analysis

Using

$$\begin{split} &i_0 = i_1 + i_2 \\ &i_0 = \frac{v_0}{R_2 + R_1 \parallel R_i} + \frac{v_0 - (-Av_x)}{R_0} \\ &i_0 = v_0 \left(\frac{1}{R_2 + R_1 \parallel R_i} + \frac{1}{R_0}\right) + \frac{A}{R_0} \left(v_0 \frac{R_1 \parallel R_i}{R_1 \parallel R_i + R_2}\right) \\ &i_0 = v_0 \left(\frac{1}{R_2 + R_1 \parallel R_i} + \frac{1}{R_0} + \frac{A}{R_0} \frac{R_1 \parallel R_i}{R_1 \parallel R_i + R_2}\right) \\ &\Longrightarrow \frac{i_0}{v_0} = \left(\frac{R_0 + R_2 + R_1 \parallel R_i(1 + A)}{R_0(R_1 \parallel R_i + R_2)}\right) \end{split}$$

Page 7 of 9.

ID no.:

Name:_____

5/14/2009 11:00 to 12:20 pm Professor Peter Burke

$$\Rightarrow R_{th} = \frac{v_0}{i_0} = R_0 \left(\frac{(R_1 \parallel R_i + R_2)}{R_0 + R_2 + R_1 \parallel R_i (1+A)} \right) \approx \frac{R_0}{A} \Rightarrow R_{th} = 0.00015\Omega$$

Alternatively, you can short the load and find i_{short} and get $R_{th}^{i} \!=\! V_{th}/i_{short}$

$$i_{1} + i_{2} + i_{3} = 0$$

$$\frac{v_{x} - v_{s}}{R_{1}} + \frac{v_{x}}{R_{i}} + \frac{v_{x}}{R_{2}} = 0$$

$$v_{x} \left(\frac{1}{R_{1}} + \frac{1}{R_{i}} + \frac{1}{R_{2}}\right) - \frac{v_{s}}{R_{1}} = 0$$

$$\Rightarrow v_{x} = \frac{v_{s}}{1 + \frac{R_{1}}{R_{i}} + \frac{R_{1}}{R_{2}}}$$

At the other node the current equation is,

$$i_4 + i_{ss} = i_3$$

$$\frac{0 - Av_x}{R_0} + i_{ss} = \frac{v_x}{R_2}$$

$$\Rightarrow i_{ss} = v_x \left(\frac{1}{R_2} + \frac{A}{R_0}\right)$$

$$\Rightarrow i_{ss} = \frac{v_s}{1 + \frac{R_1}{R_i} + \frac{R_1}{R_2}} \left(\frac{1}{R_2} + \frac{A}{R_0}\right)$$

Since R_{th}=V_{th}/i_{ss} we get,

$$\Rightarrow R_{th} = \frac{v_{th}}{i_{ss}} = \frac{\left(\frac{\left(-A + \left(\frac{A+1}{R_0 + R_2}\right)R_0\right)}{\left(1 + \frac{R_1(A-1)}{R_0 + R_2} + \frac{R_1}{R_i}\right)}\right)}{\frac{\left(\frac{1}{R_2} + \frac{A}{R_0}\right)}{1 + \frac{R_1}{R_i} + \frac{R_1}{R_2}}} \approx \frac{R_0}{A}$$

 $\Rightarrow R_{th} = 0.00015\Omega$

Name:_____

5/14/2009 11:00 to 12:20 pm

ID no.:_____

Professor Peter Burke

Assuming an ideal op-amp we get $V_{th} = -(R_2/R_1)V_s = -2V_s$ and $R_{th} = 0\Omega$ which is approximately what was derived above. Other characteristics of an ideal op-amp are $R_0 = 0$, $R_i = \infty$, $A = \infty$.

Problem 3: Grading Criteria:

6pts for drawing the circuit diagram 8pts for R_{th}:

- 4pts partial credit for fair attempt at R_{th} and is given as a function of R₁, R₂, R_i, R₀ OR
- 2pts partial credit for fair attempt at R_{th} and is given as a function of R_1 , R_2

8pts for V_{th} :

- 4pts partial credit for fair attempt at V_{th} and is given as a function of R_1 , R_2 , R_i , R_0 , A, V_s

OR

- 2pts partial credit for fair attempt at V_{th} and is given as a function of R_1 , R_2 . V_s

5pts for comparing to ideal op-amp, V_0 =- R_2/R_1V_s =- $2V_s$.

- 3pts if you write $V_0=2V_s$

3pts for saying $R_0=0$, $R_i=\infty$, $A=\infty$.