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(b) Because we have equated e | = ey ] t0 &, the electric fields at the two sides of the
interface are equal. The slopes of the electric field are 0 and gN 1/e; in the undoped and
doped portions of region 1, respectively. From an inspection of Fig. (old)5-24b, we can

say,
&1 =2t ( Xaeps - 8) Nuy (1)
The total amount of area enclosed by the electric field is the potential drop across the two
ends. Hence, we can write,

op.] = O
5+%&1=¢m. @)

where @p;,] and Xgep, 1 are the built-in voltage and the depletion thickness in region 1,
respectively. Substltutmg Eq. (1) into Eq. (2) eliminates the variable Xggp 1. The resultant

equation is quadratic in & 1. which can be solved as,

2
eseiy =V (gNu18 f +2gNaes Opit - gN216 @)

&1

(c) Since &1 = &2, ns and g; | are related through Eq. (5-105). We then arrive at the final
set of equations which allow the simultaneous determination of the two unknowns: n; and

Ey

2Ng 1&s
ng = \/( Nai8 | + g eillEp - Naid (4)
where ng is in cm-2; and Efis in eV. At the room temperature, kT = 0.0258 eV. For
clarity, we write @p; | explicitly as a function of Ez. The dependence is clear from Fig. 5-
21

AE .
i == - Oy - F )
where @y | is E, - Erat x = -co. The determination of @y,) can be found in Examples 1-3

and 1-4.

(d) The other equation, based on Eq. (5-98), is,
Ej- 1.11% 10 (o, P2 ]
kT

In 1+cxp( +In| 1 +exp

kT

S

E/-1.95x 10 ( ng 23 H

=




%
D kT A (6)

As mentioned, the zero energy level is at the bottom tip of the triangular well. The
procedure 1o numerically solve for ny and Eis to first guess a negative Ey, such that the
cuessed Efis below the tip of the triangular well, From this initial guess, @p; ) is evaluated
in accordance with Eq. (5). and n; is determined from Eq. (4). These two values of Eyand
n, are substituted into Eq. (6) to check for equality. If the two sides of Eq. (6) are
different. another value of Efis guessed. The iteration continues until a certain
convergence criterion is met.

@a) E, =0.056 n? eV. So, E; =0.056 eV and E> = 0.224 eV.
(b) n_s--Dl:Tln[ 1 +exp(—5‘%[— w

. dng _ . 1 | E[ - E,
(c) =28 = INET = e.xp( )
dEg I_._exp(_E[k—T:E, )AT kT
dns _ D
E 1eenp( EZEC
Ey-Ef n
Ay = 3 Lrexp( BEEE) | en(g]
50, Ip=—c = -
2 D g* D L
q | q exp(Dk’ ) 1
(d) when ny is large,
-12
Aty = —2—= Lilswe 10 =2.6%107 cm

9’D (1.6 x 1019F - 1.743 x 1032

10. (a) Itis obtained by taking the derivative of Eq. (5-151) with respect to x, evaluating
the derivative at x = L, and seek the condition such that the derivative is equal to - e (rather

than &g, as in § 5-7).
( a-1 )2 = 'SsarL
2 Ucr(0)

(b) o=2-V3, or Ucy(L)=0.268 V. When Ucy(L) = 0.3V, it is larger than 0.268 V.
Hence, we expect Eq. (5-151) to hold. When Ucg(L) =0.25 V is smaller than 0.268 V,
the saturation region has been formed and Eg. (5-151) fails.

(c) 0.642V.
11. (a) i)
L UcL
f fD( ‘%’J%UCH)dxz' Wug C‘ax[ UCH(x)dUCH
0 sat Uci0)
. WioCox 5 [ UZ4(0)- Uly (L)]

2 L+ (Uct0) - Ucs(L)) ! Esar
With Ucy(0) = Vgs - Vrand Uch(L) = Vs - VT - Vps, we get
WMOC;M :

Vv
= x| ( Veac - Vo) Ve - ~28

2

St




21ps sat =sWhiroEsar (Vs - Visisa) _ 0

NS‘ v AID - VI)S' sat 8
where B is ( - , )
_2 Whyges, 2 =sWhigsa (Vs - Vps.sal
£+ V;J‘S..\ut ( L+ VI.;S.sul ):
“sat 3
= E‘\Wifl-l()?m B = M‘iﬁﬂ
L Vs .sat ' I+ Vs sat
Esn Esar

Hence. the drain current as a function of Vpg is given by.
B ( Bj 211’).&'.5:1[ =5 H/hll(]f:'m, (VI_)S - Vl).’i.sal) 12

Ip=1Ipssu-5+ T % , -

{ (L + DS.sat )

Esar

rom Egs. (5-99). (5-106) and (5-107),
s =D[l.95 % 107 (nf? - 1.11 x 107° (115)7"3] + 2D [Ef -1.95x% 10 (ns)?'”]
ng , 3.06 % 10

2D 2
when 1 = 2 x 1012 em 2, with D = 2.79 x 1013 cm2-eV-1, Ep=0.279 eV.

n2i3

@) The various parameter values given in the description are: 7, = 280 A; 6=30A;
d

1=1x 1018 cm3; and ¢ = 1 eV. According to the description about Eq. (5-115), Ef
=(0.0518 eV. From Eg. (1-90), AE, of an Alg 35Gap ¢5As/GaAs heterojunction is 0.244
eV. According to Eq. (5-113):

v 1.6x1019-1x 108
Ooo = (

2-1.159 x 10712
The threshold voltage is found from Eq. (5-119) as:

AL
VT=¢B+§q‘&'¢OO' <
=1.0+0.0518 -0.431 -0.244=0.377 V

(b) Vpssat= Vgs- Vr=0.5-0.377=0.123 V. Since Vpg > Vs sars the transistor is
in saturation and the saturation index &= 0. The gate capacitance per area is found from

Eq. (5-121):

280 % 108-30 x 108 f = 0.431 V

=12
C o= 1150 % 10 z3.33x10-7L7
280 % 108 + 68 x 108 cm-
The current is given by Eq. (5-133):
i WC:MH;; (VGS" VT}Z
o L 2
4. T 2
_500x 104+ 3.33x 107 - 6500 (0.5 - 0.377) — 01033 &
0.25 x 104

14. (a) False. The statement is true only under the d.c. condition. During transient, there
is also gate current.

5S




z12=-ygd/dely

z21=-ydg/dely

z22=ygg/dely

z11prime=2z11 + RG + RS

z12prime=z12 + RS

z21prime= z21 + RS

z22prime= z22 + RG + RS

h21= cabs(- z21prime/z22prime)

U= cabs(z21prime - z12prime)” cabs(z21prime- z12prime)
+ /(Real(z11prime)*Real(z22prime)-Real(z12prime)*Real(z21prime))
+ /4.

write (1,5) K21, U

end

11. The factor (1 - &) in Eq. (6-170) can be found from Eq. (5-132) as Vps/Vpsa-
Therefore, according to Eq. (6-170)
1 Vps |33+ 15a% + 100 +2 __1 Vps

Em Vpsar 10(1+a)(l +2(X)2 a=1 - 6 gn VDsar

Rch =

_lp. W_1.003-1000_,
12. (a) RG 3RSHGL 3 0.03 0.5 20 Q

P e W-1.,1. 100 _ g2
(b) Rg N X 3 Rsue 10 X 3 0.03 5 Q
Rog=-LxLl Ry W=Lxl. 03-200 _ 20
© lez WL, le?. 0 0.5 0.2

13. From Eq. (5-117), Atp = 68 A. According to Eq. (5-121), the total gate oxide
capacitance is:

-14
Cox = 131885 X107 29 x32% 108 =292 % 104 F

(300 + 68)x 108
The overlap gate-to-drain capacitance (which is identical to the gate-to-source capacitance)
is:

Ceap=2.92X 104%0.1=29 x10F

According to Egs. (6-16) and (6-17), the intrinsic Cge and Cgg at o= 0 are:
Cog=2.92x 101 x[2]=1.95x 104F
Cea=4.6x101x[0]=0

The total C,, ¢ is the intrinsic component plus two times the overlap capacitance. It is two
2 &8> X . -
times because the overlap exists at both the drain and the source sides:

Crgt = 1.95% 1074 4 2¢ 2.9 % 10°%5'=2.53% 107“F..

The total Cggy is equal to the intrinsic component plus the overlap component:
Coar=0+2.9 x105=29 x 10 F

The gate resistance is calculated from Eq. (6-193):

ke 32 .1
Re=3552978=29,
According to Eq. (6-235), we have,

] _253x10 253x10°1
2nfr  0.07 0.48

=3.74 %105
Therefore, fr = 425 GHz. To find the maximum oscillation frequency, we determine the

(1+43)-0.00573 +(1+3)-29x 10

(2.




parameter ¥ from Eq. (6-239):

\(2:53%10 4f (0.00573p (2.53 x 10°14)(2.9 x 1015)(0.00573)

VY=(3+] 34
(0.077 ( ) (0.07)
+(3.53 w 10-14) (0.00573)
(0.07¢

= 1.0 x 0¥ Fs

From Eq. (6-238). we then have,
/ 425 % 107
.fnm‘\ - / 5 475 109
/\/ 8m-23-2.9x10715(1 4 22X T g 5 10
29x 1013

So, finax 1s 363 GHz.

14. The change in geometry modifies the gate resistance. Because f7 does not depend on
the gate resistance, the cutoff frequency is snll 425 GHz. However, fay 18 affected.

_] o F2XE
RG— 5 0.29 —14719.'
From Eq. (6-238) and the ¥ from the solution of Problem 13:

425 % 10°
2m - 425 x 102
2.9x%x 1013

.ﬂna.r =

1 x 1047

8m - 1471 - 2.9 x 10-15(1 +
The maximum oscillation frequency is 45 GHz.

15. MSG is equal to the magnitude of yz;/y;2. From Eq. (2-226), we have, y21 = gm -
j@Cqgtand y12 = - jwCgq;. Therefore, MSG is,

; al 2
MSG = ‘ &m j]w Cagpt - gh+ wzcd_g.t
-j@ ng!( w2cgd ;
When the parasitic capacitances are neglected, then,
2+ wC3
MSG = —" 2
w’C :

The second expression is problematic at times because Cgg, the intrinsic device capacitance,
is zero when the device is in saturation. Cgdy, in contrast includes the parasitic capacitance
between the gate and the drain and is never zero.
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