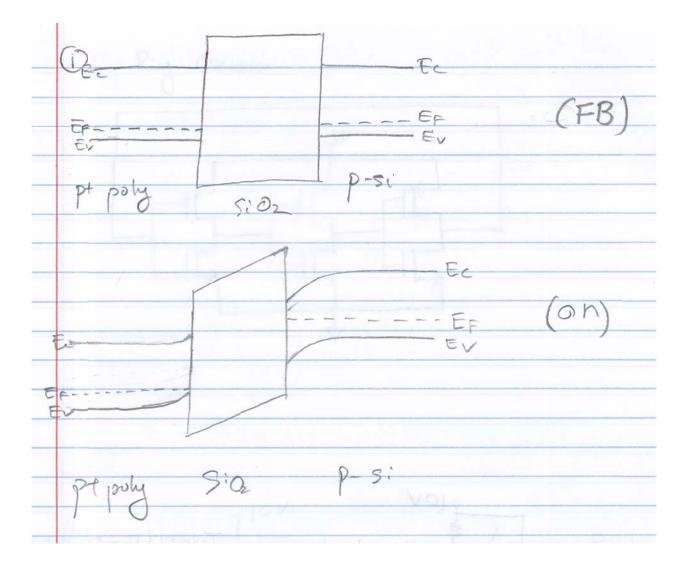
Name:_____

12/07/2011 4:00pm to 6:00pm Professor Peter Burke ID no.:_____

1	2	3	4	Total
/30	/40	/20	/10	/100

DO NOT BEGIN THE EXAM UNTIL YOU ARE TOLD TO DO SO.


Name:_____ ID no.:

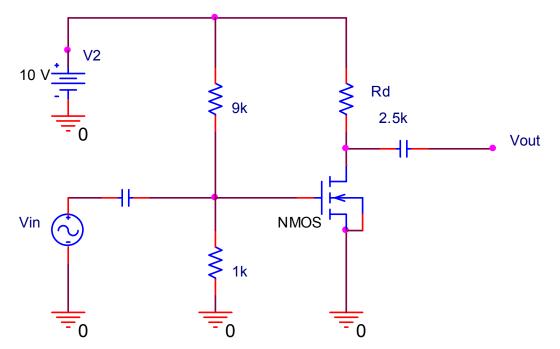
12/07/2011 4:00pm to 6:00pm Professor Peter Burke

PROBLEM ONE: (30 points)

Draw the Band Diagram of an n-channel MOSFET with p^+ polysilicon gate in

- a) The Flat Band state.
- b) The ON state.

Name:______
ID no.:______


12/07/2011 4:00pm to 6:00pm Professor Peter Burke **PROBLEM TWO(40 points):**

Find the voltage gain of the NMOS amplifier below. (where $V_t = 0$, $W = 10 \mu m$, $L = 1 \mu m$

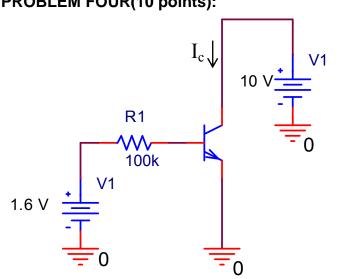
$$\mu_{eff} = 600 \frac{cm^2}{V-s}$$
, and oxide thickness is 10nm). Also, $\mathbf{\mathcal{E}}_{OX} = 4\mathbf{\mathcal{E}}_{O}$.

Recall that:

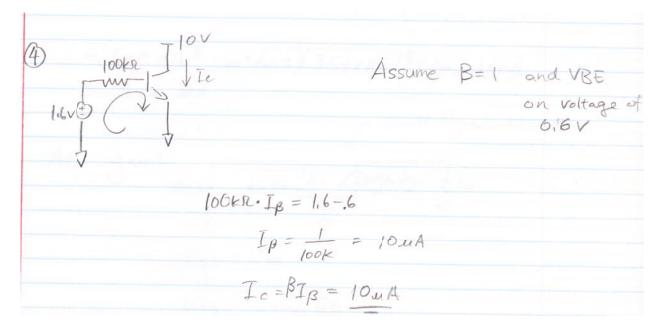
$$g_m = \mu_{eff} C_{ox} \frac{W}{L} (V_{gs} - V_t)$$

EECS170A Fall 2011 Final Exam Name: 12/07/2011 4:00pm to 6:00pm ID no.: Professor Peter Burke $(2) g_m = Meff Cox \frac{W}{L} (V_{GS} - V_t) \qquad V_t = O \quad W = IO_{um} \quad L = I_{um}$ Meff = 600cm²/V-s $C_{0X} = \frac{E_{0X}}{T_{0X}} = \frac{K_{E_0}}{I_{0Nm}} = \frac{4 \cdot 8.85 \times 10^{-12}}{I_{0XI0} - 9} F/m$ = 3.54×10-3 F/m2 $V_{GS} = 10 \cdot \left(\frac{1}{1+9}\right) = 1V$ $g_{m} = (600 \text{ cm}^{2}/\text{V-S})(3.54\times10^{-3} \text{ F/m}^{2})(\frac{10}{1})(1-0)$ =(600 ×108 μm²/v-s)(3.54×10-15 F/μm²)(1)×10 = 2124μA/V Small signal Mode Small signal Model AC gain: Vin & ZIK//9K Tys DgmUgs ZRD Vas = Uin $\frac{V_{gs}}{V_{in}} = -gmRD$ = -gm·2.5ks. = -2124uA/ .2.5ks = [-5.3]

Name:_____ ID no.:_____


12/07/2011 4:00pm to 6:00pm Professor Peter Burke **PROBLEM THREE(20 points):**

Three inverters in series form a ring oscillator. Draw the transistor level circuit diagram for a ring oscillator.


3 Ring Oscillator VDD

Name:	
ID no.:	

12/07/2011 4:00pm to 6:00pm Professor Peter Burke **PROBLEM FOUR(10 points):**

For the amplifier circuit above, assume $\beta = 1$ and the turn-on voltage for V_{BE} is 0.6 V. Find the collector current I_c .

12/07/2011 4:00pm to 6:00pm Professor Peter Burke Name:_____ ID no.:_____

Symbol	Name	Value
<i>q</i>	Electronic charge (magnitude)	1.60×10^{-19} coul
ε	Permittivity of free space	8.85×10^{-14} farad/cm
k	Boltzmann constant	$8.617 \times 10^{-5} \mathrm{eV/K}$
h	Planck constant	6.63×10^{-34} joule-sec
m_0	Electron rest mass	$9.11 \times 10^{-31} \text{ kg}$

Effective density of states (cm⁻³)

Conduction band, $N_c: 3.2 \times 10^{19}$ Valence band, $N_v: 1.8 \times 10^{19}$

	$m_n^* / m_o = 1.08$
Effective mass	$m_p^* / m_o = 0.56$