Student ID #:_____

EECS 170A Homework #2

HW will be collected in discussion section. Please do not turn your HW in anywhere else. Due: Noon Thursday, October 13, 2011.

Please *staple* this sheet to the front of your homework.

1	2	3	4	5	Total
/20	/20	/20	/20	/20	/100

- 1) Given Si at 300K where Nd = 10^{18} cm⁻³ and Na = 0. The Length =10cm and Diameter=1mm. Calculate electron concentration (n), hole concentration (p), electron mobility (μ n), and Resistance (R).
- 2) Given Si at 300K where Na = 10^{16} cm⁻³ and Nd = 0. The Length =1cm and Diameter=10 μ m. Calculate electron concentration (n) , hole concentration (p), hole mobility (μ p), and Resistance (R).
- 3) In order to achieve a resistivity (ρ) of 1 Ohm-cm:
 a)What values of Na with Nd = 0 is needed for a p-typed semiconductor?
 b)What values of Nd with Na = 0 is needed for a n-typed semiconductor?
- 4) Calculate a) The resistance (R) of a n-type Si doped wire with $Nd = 10^{20} \text{ cm}^{-3}$ (Length = 1cm and Diameter = 1mm). b)The resistance (R) of a copper wire with a resistivity (ρ) of 2 μ Ohm-cm (Length = 1cm and Diameter = 1mm).
- 5) Find the electron concentration (n) and hole concentration (p) of Si assuming $Na=Nd=10^{16} \text{ cm}^{-3}$.