## Student ID #:\_\_\_\_\_

## EECS 170A Homework #4

HW will be collected in discussion section. Please do not turn your HW in anywhere else. Due: Noon Thursday, October 27, 2011.

Please *staple* this sheet to the front of your homework.

| 1   | 2   | 3   | 4   | Total |
|-----|-----|-----|-----|-------|
| /25 | /25 | /25 | /25 | /100  |

- 1) Given Si at room temperature at equilibrium.  $N_D = 0$ ,  $N_A(x) = 10^{16}$  cm<sup>-3</sup> for x < 0 and  $N_A(x) = 10^{17}$  cm<sup>-3</sup> for x > 1µm with a smooth gradual variation in between.
  - a) Sketch and find: Hole Concentration p(x), Electron Concentration n(x), Electric Field E(x), J<sub>ndiff</sub>(x), J<sub>ndiff</sub>(x), J<sub>pdiff</sub>(x), J<sub>pdiff</sub>(x).
  - b) Sketch the Band Diagram.
  - c) Which current components are the largest? Which are the smallest?
- 2) Given the following Band Diagram:



- a) Sketch and find: Hole Concentration p(x), Electron Concentration n(x), Electric Field E(x), J<sub>ndiff</sub>(x), J<sub>pdiff</sub>(x), J<sub>pdiff</sub>(x), J<sub>pdiff</sub>(x).
- b) Assume  $N_D = 0$ . Find  $N_A$  in cm<sup>-3</sup> the left hand side.
- 3) Given the following expression for electron concentration:  $n(x) = n_0 * e^{-x/L_0}$  where  $n_0 = 10^{18} \text{cm}^{-3}$  and  $L_0 = 1 \mu \text{m}$ .

Find  $J_{ndrift}(x)$ .

## Student ID #:\_\_\_\_\_

- 4) For the Band Diagram below:
  - a) Find: Hole Concentration p(x), Electron Concentration n(x), Electric Field E(x),
  - $J_{ndiff}(x), J_{ndrift}(x), J_{pdiff}(x), J_{pdrift}(x).$ b) Find N<sub>D</sub>(x) assuming N<sub>A</sub>(x) = 0.

