Student ID #:_____

EECS 170A

Homework #5 HW will be collected in discussion section. Please do not turn your HW in **anywhere else.** Due: 10:50am Thursday, November 3, 2011.

Please staple this sheet to the front of your homework.

	1	2	3	4	Total
	/25	/25	/25	/25	/100
Ĩ	1) 701 6 11	• • •	11 1 D' 1		

1) The following is the Ideal Diode equation:

 $I = I_o (e^{qV_{diode}/kT} - 1)$

Take $I_{o} = 10^{-15}$ A. For the circuit shown in the figure below, fill in the following table:

$V_{AC}(V)$	$V_{\text{Diode}}(V)$	$V_{BC}(V)$
-10V		
-7.5V		
-5V		
0V		
5V		
7.5V		
10V		

2) Assume a Solar Cell that is 100% efficient. In board daylight, the sun energy is $1 \text{kW} / \text{m}^2$. The area of the Solar Cell is 1 m^2 . All energy is converted to electron-hole pairs. With $V_{\text{Applied}} = 0$, What amount of current is flowing through the Solar Cell? (I_{solar}).

Ν	ame	:
IN	ame	•

3) Using the following schematic for reference:

Now using:
$$I_{total} = I_{solar} + I_o (e^{qV_{bi}/kT} - 1)$$

Find the available power from the Solar Cell that is delivered to the Load Resistor.

4)For a PN junction with $N_A = 10^{18} \text{ cm}^{-3}$ and $N_D = 10^{14} \text{ cm}^{-3}$. a)Draw the Band Diagram under 0 Bias, 0.1V Forward Bias, -1V Reverse Bias, and -10V Reverse Bias. b) Find built in Voltage (V_{bi}) in Volts.