EECS170A Fall 2011 Midterm 1
10/21/2011 4:00pm to $4: 50 \mathrm{pm}$
Professor Peter Burke
\qquad

1	2	3	4	Total	
	$/ 25$		$/ 25$		$/ 25$
	$/ 25$	$/ 100$			

DO NOT BEGIN THE EXAM UNTIL YOU ARE TOLD TO DO SO.

10/21/2011 4:00pm to $4: 50 \mathrm{pm}$
ID no.:
Professor Peter Burke
PROBLEM ONE: (25 points)
A Silicon bar at room temperature is doped with $\mathrm{N}_{\mathrm{A}}=10^{17} \mathrm{~cm}^{-3}$ and $\mathrm{N}_{\mathrm{D}}=0$.
Calculate the Resistance in (Ω) of the bar with $\mathrm{L}=100 \mu \mathrm{~m}$ and Height $=$ Width $=1 \mu \mathrm{~m}$.

Solution:

$$
R=\rho \frac{l}{A}
$$

From the resistivity chart, $\rho \approx 0.2 \Omega-\mathrm{cm}$ for $\mathrm{N}_{\mathrm{A}}=10^{17} \mathrm{~cm}^{-3} 7$ pts for correct approximation Acceptable range (0.1 to 0.3)

$$
R=0.2 \Omega-\mathrm{cm} \frac{100 \mu \mathrm{~m}}{(1 \mu \mathrm{~m})^{2}}=200 \mathrm{k} \Omega
$$

\qquad
Professor Peter Burke

PROBLEM TWO(25 points):

From problem \#1, Find $\mathrm{E}_{\mathrm{C}}-\mathrm{E}_{\mathrm{F}}$ and $\mathrm{E}_{\mathrm{F}}-\mathrm{E}_{\mathrm{V}}$. Sketch the Band Diagram and indicate your findings.

Solution:

$$
E_{i}-E_{F}=k T \ln \left(N_{A} / n_{i}\right)=0.0259 \ln \left(10^{7}\right)=0.417 e V
$$

2 pts for correct equation
2 pts for correct natural log approximation
2 pts for correct answer : Acceptable range (0.4 to 0.5)

$$
E_{c}-E_{F}=E g / 2+\left(E_{i}-E_{F}\right)=0.56+0.417=0.977 \mathrm{eV}
$$

6 pts for correct $\mathrm{E}_{\mathrm{C}}-\mathrm{E}_{\mathrm{F}}$ Acceptable range (0.85 to 0.99)

$$
E_{F}-E_{V}=E g-\left(E_{c}-E_{F}\right)=1.12 \mathrm{eV}-0.977 \mathrm{eV}=0.143 \mathrm{eV}
$$

6 pts for correct $\mathrm{E}_{\mathrm{F}}-\mathrm{E}_{\mathrm{V}}$ Acceptable range (0.1 to 0.25)

3.5 pts for correct $\mathrm{E}_{\mathrm{C}}-\mathrm{E}_{\mathrm{F}}$ Drawing. Acceptable range (0.85 to 0.99)
3.5 pts for correct $\mathrm{E}_{\mathrm{F}}-\mathrm{E}_{\mathrm{V}}$ Drawing. Acceptable range (0.1 to 0.25)
\qquad
Professor Peter Burke

PROBLEM THREE(25 points):

Given Silicon at room temperature with $\mathrm{E}_{\mathrm{C}}-\mathrm{E}_{\mathrm{F}}=0.3 \mathrm{eV}$ and same geometry as problem \#1. Calculate:
a) the electron concentration $\left(\mathrm{n} \mathrm{in} \mathrm{cm}^{-3}\right)$
b) hole concentration (p in cm^{-3})
c) resistivity (ρ in Ω-cm)
d) majority carrier mobility (μ in $\mathrm{cm}^{2} / V-\mathrm{s}$)
e) dopant concentration (in cm^{-3})

Solution:

a)
$E_{C}-E_{F}=0.3 \mathrm{eV}$
$E_{F}-E_{i}=0.56 \mathrm{eV}-0.3 \mathrm{eV}=0.26 \mathrm{eV}$
$E_{F}-E_{i}=k T \ln (n / n i)=0.0259 \ln \left(n / 10^{10}\right) \quad 5$ pts for setting for $\mathrm{E}_{\mathrm{F}}-\mathrm{E}_{\mathrm{i}}$ equation
$n=2.289 * 10^{14} \mathrm{~cm}^{-3}$
Acceptable range $\left(10^{14}-9.9 * 10^{14}\right)$
b)
$p=n_{i}{ }^{2} / n=4.368 * 10^{5} \mathrm{~cm}^{-3}$ 5 pts for correct answer.
Acceptable range $\left(10^{4}-9.9 * 10^{4}\right)$
c), d), e)

With $\mathrm{n} \gg \mathrm{p}, \mathrm{Nd} \approx \mathrm{n}=2.289 * 10^{14} \mathrm{~cm}^{-3}$
5pts for correct assumption.
$\mu_{n} \approx 1500 \mathrm{~cm}^{2} / V^{*} s$ from the mobility chart. $\quad 5 \mathrm{pts}$ for correct approximation.
Acceptable range (1000-2000)
$\rho=\frac{1}{q \mu_{n} N_{D}}=\frac{1}{1.6 * 10^{-19} * 1500 * 2.289 * 10^{14}}=18.2 \Omega-\mathrm{cm} \quad 5 \mathrm{pts}$ for correct resistivity
Acceptable range (10-30)

EECS170A Fall 2011 Midterm 1
10/21/2011 4:00pm to $4: 50 \mathrm{pm}$
Professor Peter Burke

ID no.: \qquad

PROBLEM FOUR(25 points):

Sketch the probability distribution function $f(E)$ for electrons, $1-\mathrm{f}(\mathrm{E})$ for holes, density of states $g_{c}(E)$ for electrons, $g_{v}(E)$ for holes, and the energy distribution of carriers $f(E) * g_{c}(E)$ for electrons and $\mathrm{g}_{\mathrm{v}}(\mathrm{E}) *(1-\mathrm{f}(\mathrm{E}))$ for holes problem \#1.

Density of States

Probability distribution function

Energy distribution of carriers

5pts for correct drawing of $\mathrm{g}_{\mathrm{c}}(\mathrm{E})$ for electrons.
5pts for correct drawing of $g_{v}(E)$ for holes.
5pts for correct drawing of $f(E)$ and 1-f(E) note* (if you did not draw 1-f(E), at least make some sort of mention of it on the plot for answer to be accepted)

5pts for correct drawing of $f(E) * g_{c}(E)$

5 pts for correct drawing of $\mathrm{g}_{\mathrm{v}}(\mathrm{E})^{*}(1-\mathrm{f}(\mathrm{E}))$

