EECS170A Fall 2011 Midterm 1

10/21/2011 4:00pm to 4:50pm Professor Peter Burke

mame:	Solution Grading Criteria
ID no.:	

1	2	3	4	Total
/25	/25	/25	/25	/100

DO NOT BEGIN THE EXAM UNTIL YOU ARE TOLD TO DO SO.

PROBLEM ONE: (25 points)

A Silicon bar at room temperature is doped with $N_A = 10^{17}$ cm⁻³ and $N_D = 0$. Calculate the Resistance in (Ω) of the bar with $L = 100\mu m$ and Height = Width = $1\mu m$.

Solution:

$$R = \rho \frac{l}{A}$$

8 pts for writing correct formula.

From the resistivity chart, $\rho \approx 0.2~\Omega$ -cm for $N_A = 10^{17}~cm^{-3}~7$ pts for correct approximation Acceptable range (0.1 to 0.3)

$$R = 0.2 \ \Omega \text{-cm} \frac{100 \mu \text{m}}{(1 \mu \text{m})^2} = 200 \text{k}\Omega$$

10pts for correct set up calculation

Acceptable range (150k to 250k)

10/21/2011 4:00pm to 4:50pm Professor Peter Burke Name: Solution Grading Criteria

ID no.:

PROBLEM TWO(25 points):

From problem #1, Find $E_C - E_F$ and $E_F - E_{V.}$ Sketch the Band Diagram and indicate your findings.

Solution:

$$E_i - E_F = kT \ln(N_A / n_i) = 0.0259 \ln(10^7) = 0.417 eV$$

2pts for correct equation

2pts for correct natural log approximation

2pts for correct answer: Acceptable range (0.4 to 0.5)

$$E_c - E_F = Eg / 2 + (E_i - E_F) = 0.56 + 0.417 = 0.977eV$$

6pts for correct $E_C - E_F$ Acceptable range (0.85 to 0.99)

$$E_F - E_V = Eg - (E_c - E_F) = 1.12eV - 0.977eV = 0.143eV$$

6pts for correct $E_F - E_V$ Acceptable range (0.1 to 0.25)

 $3.5\ pts$ for correct E_C-E_F Drawing. Acceptable range (0.85 to 0.99)

3.5 pts for correct $E_F - E_V$ Drawing. Acceptable range (0.1 to 0.25)

PROBLEM THREE(25 points):

Given Silicon at room temperature with $E_C - E_F = 0.3 eV$ and same geometry as problem #1. Calculate:

- a) the electron concentration (n in cm⁻³)
- b) hole concentration (p in cm⁻³)
- c) resistivity (ρ in Ω -cm)
- d) majority carrier mobility (μ in cm²/V-s)
- e) dopant concentration (in cm⁻³)

Solution:

a)

$$E_C - E_F = 0.3eV$$

$$E_F - E_i = 0.56eV - 0.3eV = 0.26eV$$

$$E_F - E_i = kT \ln(n/ni) = 0.0259 \ln(n/10^{10})$$

5pts for setting for $E_F - E_i$ equation

$$n = 2.289 * 10^{14} cm^{-3}$$

Acceptable range (10¹⁴ - 9.9*10¹⁴)

b)

$$p = n_i^2 / n = 4.368 * 10^5 cm^{-3}$$

5pts for correct answer.

Acceptable range $(10^4 - 9.9*10^4)$

(c), (d), (e)

With n >> p, Nd
$$\approx$$
 n = 2.289*10¹⁴ cm⁻³

5pts for correct assumption.

 $\mu_n \approx 1500 cm^2 / V * s$ from the mobility chart.

5pts for correct approximation.

Acceptable range (1000-2000)

$$\rho = \frac{1}{q\mu_n N_D} = \frac{1}{1.6*10^{-19}*1500*2.289*10^{14}} = 18.2 \text{ }\Omega\text{-cm}$$
 5pts for correct resistivity

Acceptable range (10-30)

PROBLEM FOUR(25 points):

Sketch the probability distribution function f(E) for electrons, 1-f(E) for holes, density of states $g_c(E)$ for electrons, $g_v(E)$ for holes, and the energy distribution of carriers $f(E)*g_c(E)$ for electrons and $g_v(E)*(1-f(E))$ for holes problem #1.

5pts for correct drawing of $g_c(E)$ for electrons.

5pts for correct drawing of $g_v(E)$ for holes.

5pts for correct drawing of f(E) and 1-f(E) note*(if you did not draw 1-f(E), at least make some sort of mention of it on the plot for answer to be accepted)

5pts for correct drawing of $f(E)*g_c(E)$

5pts for correct drawing of $g_v(E)*(1-f(E))$