EECS 277C: Nanotechnology Spring 2011

Textbook:	Ferry and Goodnick, <i>Transport in Nanostructures</i> , Cambridge Universite Hanson, <i>Fundamentals of Nanoelectronics</i> , Pearson/Prentice Hall <i>There will also be a reading packet and the lecture notes available in</i> <i>center at the base of Engineering Tower</i> .	ty Press
Prerequisites:	ECE 113A and Physics 51A, or consent of instructor	
Outline:		
	 Introduction to nanoscale systems. Length, energy, and time scales Top-down approach to nanolithography: Spatial resolution of optical, ultraviolet, x-ray, electron beam, and ion beam lithography. Wave-particle duality, quantized energies, particle in a box, Fermi-Didistribution function, density of states, concept of dimensionality Quantum mechanical tunneling, tunnel diodes Single electron transistor, coulomb blockade Quantum confinement of electrons in semiconductor nanostructures: dimensional confinement (quantum wells). Band gap engineering. E Landauer-Buttiker formalism for conduction in confined geometries. One-dimensional confinement: Nanowires Quantization of electrical resistance: quantum point contacts Bottom-up approach. Chemical self-assembly, carbon nanotubes. 	deep rac two- 2pitaxy.
Lecture Hours:	Mon/Wed 3:30 pm – 4:50 pm in ICS 259	
Instructor:	Professor Peter Burke, Electrical Engineering and Computer Science 2232 Engineering Gateway 949-824-9326 <u>pburke@uci.edu</u>	
Grading Components:	Midterm 130%Midterm 230%Final Exam40%	
Homework:	Homework assignments will be given but not graded. If you do not do the and understand the solutions you will probably not pass the course.	he HWs