1) Calculate the density of states vs. E in a one dimensional world
2) Find the spacing between the lowest two energy levels in a 3 d box of size 1 m .
3) Consider a single electron in a box. Calculate the size of the box at which only the ground state is occupied at room temperature.

From above $\Delta E=10^{-18} \mathrm{eV}$ (a) $L=1 \mathrm{~m}$

$$
\text { So (a) } L=\operatorname{lm} \frac{\Delta E}{K T}=\frac{10^{-18} \mathrm{eV}}{\frac{1}{30} \mathrm{eV}}=3.310^{-17}
$$

$$
\Rightarrow L=\left[3.310^{-17}\right]^{\frac{1}{2}} m=5.7 \mathrm{~nm}
$$

\Rightarrow Need $L<5.7 \mathrm{~nm}$

$$
\begin{aligned}
& \text { 2) } \Delta E=\frac{\pi^{2}}{2 m}\left(\frac{\pi}{L}\right)^{2}\left(1^{2}+1^{2}+2^{2}\right)-\left(1^{2}+1^{2}+1^{2}\right) \\
& =\frac{3 \hbar^{2}}{2 m}\left(\frac{\pi}{L}\right)^{2} \\
& m=9.1 \times 10^{-31} \mathrm{~kg} \\
& \hbar=1.05 \times 10^{-34} \mathrm{~J}-\mathrm{S} \\
& \Delta E=1.8 \times 10^{-37} \mathrm{~J} \\
& =10^{-18} \mathrm{eV} \\
& \text { 3) } \Delta E>K T \Leftrightarrow \frac{3 \hbar^{2}}{2 m}\left(\frac{\pi}{L}\right)^{2}>k T \\
& \Leftrightarrow \quad L^{2}<\frac{3 \hbar^{2}}{2 m} \frac{\pi^{2}}{K T}
\end{aligned}
$$

HW1 EECS 277B
1 dimension

$$
N_{k} d k=?
$$

"Volume" of line segment $=\mathrm{dk}$

Number of states in length= length x States/length States/length $=1 /(\pi / \mathrm{L})$:

$$
\begin{gathered}
N_{k} d k=(d k) \cdot\left(\frac{1}{(\pi / L)}\right) \cdot 2=\frac{2}{\pi} L d k \\
\rho_{k} d k \equiv \frac{N_{k} d k}{\text { length }}=\frac{2}{\pi} d k
\end{gathered}
$$

HW1 EECS 277B

1 dimension

We use:
$\rho_{k} d k=\rho(E) d E$

$$
E=\frac{\hbar^{2} k^{2}}{2 m} \Rightarrow k=\sqrt{\frac{2 m E}{\hbar^{2}}} \Rightarrow d k=\sqrt{\frac{2 m}{\hbar^{2}}} \frac{d E}{2 \sqrt{E}} d k=\frac{2}{\pi} d k
$$

$$
\rho(E) d E=\frac{2}{\pi} \sqrt{\frac{2 m}{\hbar^{2}}} \frac{d E}{2 \sqrt{E}}=\frac{1}{\hbar \pi} \sqrt{\frac{2 m}{E}} d E
$$

