EECS 70A: Network Analysis

Homework \#4

- The homework is due Thursday 5/29/2014 at 5:30pm.
- You can choose either way to turn in your homework.
- 1) Turn it in during discussions (Highly recommended)
- 2) Turn it in during TA or Grader's office hour
- 3) Slide it under TA's lab office door (Any time before deadline @EH5109)
- Note: lab location is different from office hour location.

Problem 1:

A) Given $v(t)=8 \cos (\omega t+\pi / 4)$ find the phasor \mathbf{V} that represents $v(t)$. Express \mathbf{V} as $\mathrm{x}+\mathrm{jy}$ and as re ${ }^{\mathrm{i} \phi}$.
B) Given $i(t)=4 \sin (\omega t+\pi / 4)$ find the phasor I that represents $i(t)$. Express I as $\mathrm{x}+\mathrm{jy}$ and as re ${ }^{\mathrm{i} \phi}$.
C) Given $\mathbf{V}=8+\mathrm{j} 6$ find $v(\mathrm{t})$.
D) Given $\mathbf{I}=2+2 \mathrm{j}$, find $\mathrm{i}(\mathrm{t})$.

Problem 2:

Find $\mathrm{i}(\mathrm{t})$ and $\mathrm{v}(\mathrm{t})$. Hint: convert the current source into a phasor, then find the current and voltage phasors for the whole circuit, then convert back to the time dependent $\mathrm{i}(\mathrm{t}), \mathrm{v}(\mathrm{t})$.

Problem 3:

Find $\mathrm{i}(\mathrm{t})$ and $\mathrm{v}(\mathrm{t})$. Hint: convert the voltage source into a phasor, then find the current and voltage phasors for the whole circuit, then convert back to the time dependent $\mathrm{i}(\mathrm{t}), \mathrm{v}(\mathrm{t})$.

Problem 4: Find $v(t)$.

Problem 5: Suppose the following circuit has been run for enough long time.(Initial conditions are ignored.)

Find $i(t), V_{1}(t), V_{2}(t)$ for this circuit. In class, we used phasors.
For the HW, I want you to do it WITHOUT phasors!

