EECS 70A: Network Analysis

Homework #4

- The homework is due Thursday 5/29/2014 at 5:30pm.
- You can choose either way to turn in your homework.
 - 1) Turn it in during discussions (Highly recommended)
 - 2) Turn it in during TA or Grader's office hour
 - 3) Slide it under TA's lab office door (Any time before deadline @EH5109)
- Note: lab location is different from office hour location.

Problem 1:

- A) Given $v(t) = 8 \cos(\omega t + \pi/4)$ find the phasor V that represents v(t). Express V as x+jy and as re^{i ϕ}.
- B) Given $i(t) = 4 \sin(\omega t + \pi/4)$ find the phasor I that represents i(t). Express I as x+jy and as re^{i ϕ}.
- C) Given $\mathbf{V} = 8 + \mathbf{j}\mathbf{6}$ find v(t).
- D) Given $\mathbf{I} = 2 + 2\mathbf{j}$, find $\mathbf{i}(t)$.

Find i(t) and v(t). Hint: convert the current source into a phasor, then find the current and voltage phasors for the whole circuit, then convert back to the time dependent i(t), v(t).

Find i(t) and v(t). Hint: convert the voltage source into a phasor, then find the current and voltage phasors for the whole circuit, then convert back to the time dependent i(t), v(t).

Problem 4: Find v(t).

Problem 5: Suppose the following circuit has been run for enough long time. (Initial conditions are ignored.)

Find i(t), $V_1(t)$, $V_2(t)$ for this circuit. In class, we used phasors. For the HW, I want you to do it WITHOUT phasors!

