EECS 70A: Network Analysis

June 5, 2014 Comprehensive review

Topics covered

- KCL, KVL
- Nodal analysis
- Mesh analysis
- Thevenin/Norton theorem
- RL, RC circuits (time dependence)
- R,L,C circuits
 - Phasors
 - Impedances
 - Transfer function/Bode
 - Power

Nodal Analysis(Review)

Based on KCL, use node voltages as circuits variables.

- 1. Define a reference node.
- 2. Label remaining nodes. (n-1 nodes)
- 3. Apply KCL + ohm to all nodes and supernodes (e.g. V₁, V₂, V₃, ...) Express all i's in terms of v's

4. Apply KVL to the voltage source If one end of voltage source connected to ground, don't need to

- 5. Solve the n-1 simultaneous equations, to find V's
- 6. Use Ohm's law to find the currents.

Mesh analysis summary

Based on KVL, use mesh currents as circuit variables.

- 1. Assign mesh currents $i_1, i_2, \dots i_n$
- 2. Apply KVL + Ohm's law to each mesh
- 3. Supermesh (if there is a current source present):
- CASE 1: current source only in one mesh.
 - Already have the current for that mesh => no need to write KVL for that mesh
- CASE 2: current source exits between two meshes. => create a supermesh
 - Apply KVL to the supermesh
 - Apply KCL to a node in the branch where two meshes intersect
- 1. Solve the equations for $i_1, i_2, ..., i_n$ (e.g. using Kramer's rule)
- 2. Then solve for voltages using Ohm's law

Thevenin, Norton Theorems:

Conversion procedures

For the exam, you should know how to carry out these procedures.

Circuits $\overset{\sim}{=} \mathbf{V} = \mathbf{I} \mathbf{R} \quad \overset{\leftarrow}{=} \overset{+}{=} \mathbf{V} = \mathbf{I}/j\omega \mathbf{C} \quad \overset{\rightarrow}{=} \overset{+}{=} \overset{\vee}{=} \mathbf{V} = j\omega \mathbf{L} \mathbf{I}$ "Impedance"

Z = R $Z = 1/j\omega C$ $Z = j\omega L$

KCL, KVL hold for relationship between V, I.

Series/Parallel Impedances

 $Z_{eq}^{-1} = Z_{1}^{-1} + Z_{2}^{-1} + Z_{3}^{-1}$

Conversion procedures

For the exam, you should know how to carry out these procedures.

"Transfer Function"

$H(\omega) = V_{out}/V_{in}$

Example Transfer function

Bode example

Find Vout(t) given: Vin(t)= 1 mV cos (2*pi*1kHz*t)

Comprehensive Example

Comprehensive Example

 $i_{1}(t) = \operatorname{Re}[H'_{1} e^{jwt}]$ $(3(t) = \operatorname{Re}\left[\#_{2}\right]^{H}$ $\dot{c}_{2}(t) = Re\left[i\Xi_{2}^{\prime}e^{i\omega t}\right]$

Exam cheat sheet

This will be provided with the exam.

radians :	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
\sin	$\frac{\sqrt{0}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{4}}{2}$	0
COS	$\frac{\sqrt{4}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{0}}{2}$	-1
an	$\frac{\sqrt{0}}{\sqrt{4}}$	$\frac{\sqrt{1}}{\sqrt{3}}$	$\frac{\sqrt{2}}{\sqrt{2}}$	$\frac{\sqrt{3}}{\sqrt{1}}$	DNE	0
where $\sqrt{\cdot}$ always denotes t	he positive	e square r	oot, and l	DNE mea	ns does not	exist.