EECS 70A: Network Analysis

June 5, 2014
Comprehensive review

Topics covered

- KCL, KVL
- Nodal analysis
- Mesh analysis
- Thevenin/Norton theorem
- RL, RC circuits (time dependence)
- R,L,C circuits
- Phasors
- Impedances
- Transfer function/Bode
- Power

Nodal Analysis(Review)

Based on KCL, use node voltages as circuits variables.

1. Define a reference node.
2. Label remaining nodes. ($\mathrm{n}-1$ nodes)
3. Apply $\mathrm{KCL}+$ ohm to all nodes and supernodes (e.g. $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}, \ldots$)

Express all i's in terms of v's
4. Apply KVL to the voltage source

If one end of voltage source connected to ground, don't need to
5. Solve the $\mathrm{n}-1$ simultaneous equations, to find V's
6. Use Ohm's law to find the currents.

Mesh analysis summary

Based on KVL, use mesh currents as circuit variables.

1. Assign mesh currents $i_{1}, i_{2}, \ldots i_{n}$
2. Apply KVL + Ohm's law to each mesh
3. Supermesh (if there is a current source present):

- CASE 1: current source only in one mesh.
- Already have the current for that mesh $=>$ no need to write KVL for that mesh
- CASE 2: current source exits between two meshes. $=>$ create a supermesh
- Apply KVL to the supermesh
- Apply KCL to a node in the branch where two meshes intersect

1. Solve the equations for $i_{1}, i_{2}, \ldots i_{n}$
(e.g. using Kramer's rule)
2. Then solve for voltages using Ohm's law

Thevenin, Norton Theorems:

Thevenin:

1. Calculating \mathbf{V}_{th} :

Connect nothing to $\mathrm{a}-\mathrm{b}$. Calculate voltage. This is $\mathrm{V}_{\text {th }}$.
2. Calculating \mathbf{R}_{th} :

Method 1:
Connect terminal a to b (short).
Calculate the current from a to b. This is call $\mathrm{I}_{\text {short circuit }}$.
$\mathrm{R}_{\mathrm{th}}=\mathrm{V}_{\text {th }} / \mathrm{I}_{\text {short circuit }}$.
Method 2:
Find the input resistance looking into terminals a-b after all the independent sources have been turned off.
(Voltage sources become shorts, current sources become opens.)
Trick (if dependent sources present):
Apply a 1 A current source to terminals $a-b$, find $V_{a b}$ $\mathrm{R}_{\mathrm{th}}=\mathrm{V}_{\mathrm{ab}} / 1 \mathrm{~A}$.

Norton:

1. Calculating R_{N} :
2. $\mathrm{R}_{\mathrm{N}}=\mathrm{R}_{\mathrm{th}}$
3. Calculating I_{N} :
$\mathrm{I}_{\mathrm{N}}=\mathrm{V}_{\mathrm{th}} / \mathrm{R}_{\mathrm{th}}$

Conversion procedures

$$
\begin{array}{rlrl}
\mathrm{i}(\mathrm{t}) & \rightarrow \mathbf{I} & i(t)=I_{m} \cos (\omega t+\phi) \Rightarrow & \mathbf{I}=I_{m^{i i^{i \phi}}} \\
\mathrm{v}(\mathrm{t}) & \rightarrow \mathbf{V} & v(t)=V_{m} \cos (\omega t+\phi) \Rightarrow & \mathbf{V}=V_{m^{e^{\phi}}} \\
\mathbf{I} & \rightarrow \mathrm{i}(\mathrm{t}) & i(t)=\operatorname{Re}\left(\mathbf{I} e^{j o t}\right) \\
\mathbf{V} & \rightarrow \mathrm{v}(\mathrm{t}) & v(t)=\operatorname{Re}\left(\mathbf{V} e^{j o t}\right)
\end{array}
$$

For the exam, you should know how to carry out these procedures.

Circuits

"Impedance"

$$
Z=R \quad Z=1 / j \omega C \quad Z=j \omega L
$$

KCL, KVL hold for relationship between V, I.

Series/Parallel Impedances

$$
Z_{e q}{ }^{-1}=Z_{1}{ }^{-1}+Z_{2}{ }^{-1}+Z_{3}{ }^{-1}
$$

Conversion procedures

Given $i(t)$ find $v(t)$:

For the exam, you should know how to carry out these procedures.

"Transfer Function"

$$
H(\omega)=\mathbf{V}_{\mathbf{o u t}} / \mathbf{V}_{\mathbf{i n}}
$$

Example Transfer function

Calculate $H(\omega)$ for this circuit. Sketch the magnitude of $H(\omega)$ vs. ω.

$$
\begin{gathered}
\frac{T_{04 t}}{T_{1 w}}=\frac{\left.\left(z_{3}\right) \backslash z_{4}\right)}{\left(z_{3}| | z_{4}\right)+\left(z_{1} \| z_{2}\right)} \\
=H(w)
\end{gathered}
$$

Bode example

Find Vout(t) given:
$\operatorname{Vin}(\mathrm{t})=1 \mathrm{mV} \cos \left(2^{*} \mathrm{pi}{ }^{*} 1 \mathrm{kHz}{ }^{*} \mathrm{t}\right)$

Comprehensive Example

(v2) $=I_{1}+I_{3}$

$$
\frac{V_{1}-V_{2}}{1 K \Omega}=\frac{V_{2} V_{0}}{j \omega 2 m F}
$$

(N3) 床3 = 江, \Rightarrow

Deq. 2unknowns FinQ V_{2}, \bar{V}_{3}.

Comprehensive Example

(v2) $=I_{1}+I_{3}$

$$
\frac{V_{1}-V_{2}}{1 K \Omega}=\frac{V_{2} V_{0}}{j \omega 2 m F}
$$

(N3) 床3 = 江, \Rightarrow

Deq. 2unknowns FinQ V_{2}, \bar{V}_{3}.

$$
\begin{aligned}
& i_{1}(t)=\operatorname{Re}\left[I_{1}^{\prime}, e^{j \omega t}\right] \\
& i_{3}(t)=\operatorname{Re}\left[\left(t_{1},-w_{2}\right) e^{j \omega t}\right] \\
& i_{2}(t)=\operatorname{Re}\left[I_{1}, 2 e^{j \omega t}\right]
\end{aligned}
$$

(iv) $\quad V_{0}+\left(I_{1} R\right)+\left(I_{1} \theta_{2}\right) \frac{1}{3 \omega c}=0$
(M2) $\left(\Psi_{2} f_{I_{1}}\right) \frac{1}{j \omega c}+\left(I_{2}\right) R_{2}+\left(I_{2} j^{\omega \omega}=0\right.$
Solve IN, Fiz

Phasor Example 2

Phasor Example 1

Find $v(t)$.

Symbol library

Exam cheat sheet

This will be provided with the exam.

radians :	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
\sin	$\frac{\sqrt{0}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{4}}{2}$	0
\cos	$\frac{\sqrt{4}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{0}}{2}$	-1
\tan	$\frac{\sqrt{0}}{\sqrt{4}}$	$\frac{\sqrt{1}}{\sqrt{3}}$	$\frac{\sqrt{2}}{\sqrt{2}}$	$\frac{\sqrt{3}}{\sqrt{1}}$	DNE	0

where $\sqrt{ }$ always denotes the positive square root, and DNE means does not exist.

