Announcements:

1. Announcements

EECS 70A: Network Analysis

Lecture 6

Nodal Analysis(Review)

Based on KCL, Use node voltages as circuits variables.

1. Define a reference node.
2. Label remaining nodes. (n-1 nodes)
3. Apply KCL + ohm to all nodes and supernodes
4. Express all I's in terms of v's
5. Apply KVL to loops with voltage source
6. Solve the $\mathrm{n}-1$ simultaneous equations, to find V's
7. Use Ohm's law to find the currents.

$$
V 1=\frac{\left|\begin{array}{cc}
\frac{3}{2} & \frac{1}{5} \\
-\frac{3}{2} & 0
\end{array}\right|}{\left|\begin{array}{cc}
0 & \frac{1}{5} \\
\frac{3}{8} & 0
\end{array}\right|}=-4 V
$$

$$
\begin{aligned}
& \left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a c d-b c \\
& N_{1}=\frac{\frac{3}{2} \times 0-\left(-\frac{3}{2}\right)\left(\frac{1}{5}\right)}{0 \times p-\left(\frac{1}{5}\right)\left(\frac{3}{8}\right)}=-4 \mathrm{~V}
\end{aligned}
$$

Example Nodal Problem (detailed solution)

Same circuit: Nodal analysis

1. Define a reference node.
2. Apply KCL + ohm

$$
\begin{aligned}
& \left(-\xi_{3}-G_{6}(8) v_{1}+() v_{2}+(0) v_{3}+\left(G_{6}\right) v_{4}+(0) v_{5}+(0) v_{6}\right. \\
& 368+(0) v_{7}+(0) v_{8}=(0)
\end{aligned}
$$

$$
\binom{\vdots}{\vdots}
$$

LHS roefls.

$$
\begin{aligned}
& -\left(G_{3}+f_{6}+f_{8}\right) v_{1}+f_{3} V_{2}+0 V_{3}+C_{6} V_{4}+0 V_{5}+0 V_{6}+0 V_{7}+0 V_{8}=0 \\
& -G_{3} \quad V_{1}+\left(G_{1}+G_{3}\right) V_{2}+\left(G_{9}\right)_{3}+O V_{4}+O V_{5}+0 V_{6}+O V_{7}+0 V_{8}=03 \\
& 0 v_{1}+G_{1} v_{2}+\left(-G_{1}-G_{4}\right) v_{2}+\left(G_{2}+V_{4} v_{1}+0 v_{5}+O V_{6}+v_{v_{7}}+0 v_{8}=0\right. \\
& G_{8} V_{1}+\sigma V_{2}+G_{4} V_{3}+-\left(G_{6}+G_{1}+G_{9}+G_{7}\right) V_{4}+G_{9} V_{5}+0 V_{6}+0 V_{7}+0 V_{8}=0 \\
& o v_{1}+0 v_{2}+0 v_{3}+\left(-G_{9}\right) V_{4}+\left(G_{9}+G_{12}\right) v_{5}+o v_{6}+0 v_{2}+\left(-G_{12}\right) v_{8}=0 \\
& O V_{1}+O V_{2}+O V_{3}+G_{7} V_{4}+O V_{5}+\binom{-G_{5} \sigma G_{7}}{-G_{10}} V_{6}+G_{5} V_{7}+G_{10} V_{8}=0 \\
& 0 V_{1}+O V_{2}+G_{2} V_{3}+0 V_{4}+0 V_{5}+G_{5} V_{6}+\left(-G_{2}-G_{15}\right) V_{7}+0 V_{8}=0 \\
& O V_{1}+r_{2}+o V_{3}+o V_{4}+G_{12} V_{15}+G_{10} V_{6}+\left(-G_{12}-G_{10}\right) V_{8}=\binom{0_{0}}{x}
\end{aligned}
$$

$$
\begin{aligned}
& -\left(G_{3}+f_{6}+f_{8}\right) v_{1}+f_{3} V_{2}+0 V_{3}+C_{6} V_{4}+0 V_{5}+0 V_{6}+0 V_{7}+0 V_{8}=0 \\
& -G_{3} \quad V_{1}+\left(G_{1}+G_{3}\right) V_{2}+\left(G_{9}\right)_{3}+O V_{4}+O V_{5}+0 V_{6}+O V_{7}+0 V_{8}=03 \\
& 0 v_{1}+G_{1} v_{2}+\left(-G_{1}-G_{4}\right) v_{2}+\left(G_{2}+V_{4} v_{1}+0 v_{5}+O V_{6}+v_{v_{7}}+0 v_{8}=0\right. \\
& G_{8} V_{1}+\sigma V_{2}+G_{4} V_{3}+-\left(G_{6}+G_{1}+G_{9}+G_{7}\right) V_{4}+G_{9} V_{5}+0 V_{6}+0 V_{7}+0 V_{8}=0 \\
& o v_{1}+0 v_{2}+0 v_{3}+\left(-G_{9}\right) V_{4}+\left(G_{9}+G_{12}\right) v_{5}+o v_{6}+0 v_{2}+\left(-G_{12}\right) v_{8}=0 \\
& O V_{1}+O V_{2}+O V_{3}+G_{7} V_{4}+O V_{5}+\binom{-\sigma_{5} \sigma G_{7}}{-G_{10}} V_{6}+G_{5} V_{7}+G_{10} V_{8}=0 \\
& 0 V_{1}+O V_{2}+G_{2} V_{3}+O V_{4}+0 V_{5}+G_{5} V_{6}+\left(-G_{2}-G_{5}\right) V_{7}+0 V_{8}=0 \\
& O V_{1}+r_{2}+o V_{3}+o V_{4}+G_{12} V_{15}+G_{10} V_{6}+\left(-G_{12}-G_{10}\right) V_{8}=\binom{0_{0}}{x}
\end{aligned}
$$

D
LHS roefls.

$$
\begin{aligned}
& \left.\left|\begin{array}{lll}
0 & 1 & 2 \\
4 & 0 & 0 \\
0 & 3 & 4
\end{array}\right|=-1\left|\begin{array}{l}
12 \\
34
\end{array}\right|+0| | \begin{array}{l}
-0 \\
-0
\end{array} \right\rvert\, \\
& =-(4-6)=+2 \\
& \left|\begin{array}{l}
a b c \\
d e d \\
g e k
\end{array}\right|=a\left|\begin{array}{l}
e f \\
e h
\end{array}\right|-b\left|\begin{array}{l}
2 f \\
g
\end{array}\right|+c\left|\begin{array}{l}
d e \\
g e
\end{array}\right|
\end{aligned}
$$

Nodal Analysis-Example

Mesh Analysis(Review)

Based on KVL, use mesh currents as circuits variables.

1. Assign mesh currents $i_{1}, i_{2}, \ldots i_{n}$
A. Create supermesh if current source
2. Apply KVL+ Ohm's law to each mesh KCL wl cuw. sourle
3. Solve the equations for mesh currents $i_{1}, i_{2}, \ldots i_{n}$
4. Find voltage drops

KVL
 mesh

$$
\begin{aligned}
& \text { alysis- Example } \\
& \begin{array}{l}
\left.2 \dot{2})+6+\left(c_{2}\right)-i_{3}\right) 4 \\
\left.+(\bar{c})-c_{2}\right) 1=0
\end{array} \\
& \text { KVL Suparmasn } \\
& \left.\left(i_{2}\right)+\left(i_{2}\right) i_{1}\right) 1+\left(i_{3}+i_{1}\right) 4= \\
& \left(\dot{C}_{3}\right)=3 A+\left(i_{2}\right)
\end{aligned}
$$

Nodal Versus Mesh Analysis

- The method that results in fewer number of equations is more suitable.
- Mesh analysis for networks with many series connected elements
- Nodal Analysis for networks with many parallel connected elements

But also depends on the type of the sources.

Nodal Ns . mesh analysis?

IN=OUT (G)NOD\&

$$
\begin{aligned}
2= & i_{1}+i_{2}+i_{3}+5+i_{4} \\
2 & =\frac{V_{1}}{7}-\frac{\left.V_{1}\right)}{2}+\frac{\left(V_{1}\right.}{5}+5+\frac{\left(V_{1}\right)}{3} i_{4}=-\frac{2.5}{3} A \\
& V_{1}=-2.5 \\
i_{1}= & -\frac{2.5}{7} A \quad i_{2}=\frac{-2.5}{2} A \quad i_{3}=-\frac{2.5}{5} A
\end{aligned}
$$

Nodal vs. meshanalysis?

$$
\begin{aligned}
& i_{1}=i_{1}-i_{2} \\
& i_{6}=i_{2}-i_{3} \\
& i_{c}=i_{3}-i_{4} \\
& i_{d}=i_{5}
\end{aligned}
$$

(0) $7(\operatorname{li})(i)+2(b-i y)=0$
(3) $2(i 5)-\left(\mathrm{O}_{2}\right)+5(10-5)=0$
(4) $5($ 法 $)\left(L_{3}\right)+3\left(\operatorname{K}_{5}\right)=0$

KCL \quad IN =out $\quad 5 A+(5)=\left(i^{\prime} 4\right)$
Seq 's untruowns.

Nodal vs. Mesh Analysis

Mnst
4 unknaus
4 equs.
NO DAL
qNodes
8eq n. 8 unknawn

Nodal vs. Mesh Analysis

Compartmentalization: Need for simplicity

Power brick image. And ask class to show their own... Demo: Computer?

Thevenin's Theorem

Equivalent to:

Finding $\mathrm{V}_{\mathrm{th}}, \mathrm{R}_{\mathrm{th}}$

Equivalent to:

Source/load

Thevenin Thm:
Any circuit can be represented by this equivalent circuit.

Case 1:
$R_{\text {load }} \gg R_{\text {source }}$

Case 2:
$R_{\text {source }} \gg R_{\text {load }}$

We say $\mathrm{R}_{\text {load }}$ "loads down" the source.

Source/load

Thevenin Thm:
Any circuit can be represented by this equivalent circuit.

Case 1:
$R_{\text {load }} \gg R_{\text {source }}$

Case 2:
$R_{\text {source }} \gg R_{\text {load }}$

We say $\mathrm{R}_{\text {load }}$ "loads down" the source.

Example

Find Thevenin equivalent circuit:

Norton's Theorem

Equivalent to:

Finding $\mathrm{V}_{\mathrm{th}}, \mathrm{R}_{\mathrm{th}}$

Equivalent to:

Equivalent to:

Find the Thevenin \& Norton equivalent circuit of the

Example

 circuit below with respect to terminals a and b :
b

"Baby" monster problem

Find the Thevenin \& Norton equivalent circuit of the circuit below with respect to terminals a and $b:$

