EECS 70A: Network Analysis Midterm review

Topics covered

- KCL, KVL
- Nodal analysis
- Mesh analysis
- Thevenin/Norton theorem

Nodal Analysis(Review)

Based on KCL, use node voltages as circuits variables.

1. Define a reference node.
2. Label remaining nodes. ($\mathrm{n}-1$ nodes)
3. Apply $\mathrm{KCL}+$ ohm to all nodes and supernodes (e.g. $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}, \ldots$)

Express all i's in terms of v's
4. Apply KVL to the voltage source

If one end of voltage source connected to ground, don't need to
5. Solve the $\mathrm{n}-1$ simultaneous equations, to find V's
6. Use Ohm's law to find the currents.

"Supernode"

A node with a voltage source in it...

KCL: IN=OUT

$$
i_{1}+i_{2}=i_{3}+i_{4}
$$

Must define a supernode if a voltage source appears when doing nodal analysis... (unless one end of voltage source connected to reference node)

Nodal Analysis-Example

$$
1 \sqrt{4}
$$

$$
\frac{v_{3}-24}{0.5}+\frac{V_{3}-0}{0.5}
$$

$N \frac{1 N=O U T}{2 r_{0}+V_{3}}$

$$
\left\{\begin{array}{l}
\frac{v V=0 u t}{2 V_{0}+\frac{V_{3}-V_{5}}{0.2}+\frac{0-V_{5}}{1}}=1 A \\
\left(v_{3}-V_{4}\right)
\end{array}\right.
$$

SN: $i_{4}+i_{3}=2 v_{0} \frac{v_{1}-v_{2}}{62}+\frac{v_{3}-v_{4}}{0.5}=2\left(v_{3}-v_{4}\right)$
KVL GV Vource $V_{2}-V_{4}=i,=\frac{V_{3}-0}{0}$

$$
\begin{aligned}
& N=O U T \\
& V_{1}-V_{3}=5 \\
& V_{2}-V_{1}=6 V \\
& V_{2}-V_{3}=5+6 V
\end{aligned}
$$

$$
\begin{aligned}
& v_{1}=5 v \\
& v_{2}=11 \mathrm{~V} \\
& v_{2}-v_{1}=6 \mathrm{~V}
\end{aligned}
$$

Nodal analysis example

Find the currents and voltages in this circuit:

Nodal analysis example
Using nodal analysis, find the currents and voltages in this circuit:

NI

$$
\begin{aligned}
& I N=0 U T \quad V_{3}=i_{3} \\
& \frac{V_{4}-V_{1}}{7}=\frac{V_{1}-V_{2}}{6}
\end{aligned}
$$

NZ: $5 N$
N^{3}

$$
\begin{aligned}
& 1 N=\text { out } \quad i_{5}+V_{\alpha}=0 \\
& \frac{V_{2}-V_{3}}{5}+V_{1}-V_{2}=0
\end{aligned}
$$

NH:

$$
v_{4}^{5}=5\left(1 u\left(k_{4}\right)\right.
$$

NS: $5 N$
NE: $V_{6}=8$
SN: IN = OUR $i_{3}+i_{2}=i_{5}+i_{3}$ $+57$

$$
\frac{V_{1}-V_{2}}{6}+\frac{V_{0}}{}
$$

$$
\begin{aligned}
& \beta=-v_{2}-i_{3} \\
& =-\left(\frac{v_{4}-v_{5}}{2}\right)-\left(\frac{v_{4}-v_{1}}{7}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
-V_{1}+-V_{2}+-V_{3}+-V_{4}+-V_{5}+-V_{6} & =- \\
N-\frac{1}{7}+\frac{1}{6}-\frac{1}{6} & 0 \quad \frac{1}{7} \quad 0 \quad 0
\end{aligned} \\
& \text { No } \\
& \text { No } \\
& \text { N } 6 \\
& \text { SN } \\
& \operatorname{KVLO}_{S N} \\
& 6 \times 6 \text { Solve } v_{1}-v_{6} \text {. } \\
& \text { then solve } i_{1}-i_{8}
\end{aligned}
$$

Mesh analysis summary

Based on KVL, use mesh currents as circuit variables.

1. Assign mesh currents $i_{1}, i_{2}, \ldots i_{n}$
2. Apply KVL + Ohm's law to each mesh
3. Supermesh (if there is a current source present):

- CASE 1: current source only in one mesh.
- Already have the current for that mesh $=>$ no need to write KVL for that mesh
- CASE 2: current source exits between two meshes. $=>$ create a supermesh
- Apply KVL to the supermesh
- Apply KCL to a node in the branch where two meshes intersect

1. Solve the equations for $i_{1}, i_{2}, \ldots i_{n}$
(e.g. using Kramer's rule)
2. Then solve for voltages using Ohm's law

Mesh Analysis-Introduction What is a Mesh?

- A loop is a closed path with no node passed more than once.
- A mesh is a loop that does not contain any other loops within it.

Mesh Analysis-Introduction
 Mesh Current vs. Element Current

- The current through a mesh is known as mesh current.
- Direction of the mesh current is arbitrary-conventionally assumed to be clockwise.
- The current through an element can be the same as mesh current or the subtraction of two mesh currents.

$$
\begin{aligned}
& i_{1}=I_{1}-I_{2} \\
& i_{4}=I_{4}-I_{2} \\
& i_{6}=I_{1} .
\end{aligned}
$$

Mesh analysis example
Using mesh analysis, find the currents and voltages in this circuit:

$$
\begin{aligned}
& M \backslash \\
& I, 7 \Omega+I_{1} 6+i_{\beta}+\left(I,-I_{3}\right) 2 \\
&-I_{3}
\end{aligned}
$$

M2 sM BuT LuCk Y

$$
\begin{aligned}
I_{2} & =-V_{\alpha} \overline{\left(T_{1},(n)\right.} \\
& =-\left(I_{1} 6\right)
\end{aligned}
$$

MB

$$
\begin{aligned}
- & +2\left(I_{3}-I_{1}\right) \\
& +4\left(I_{3}-I_{4}\right)=0
\end{aligned}
$$

$n_{4}\left(I_{4}-I_{3}\right) 4+$

$$
3\left(I_{4}-I_{2}\right)+8=0
$$

4 EQ 4 un le Nouns

$$
F_{1} w I_{1} I_{2} I_{3} I_{4}
$$

Thevenin, Norton Theorems:

Equivalent to:

Equivalent to:

Thevenin:

1. Calculating $V_{t h}$:

Connect nothing to $\mathrm{a}-\mathrm{b}$. Calculate voltage. This is $\mathrm{V}_{\text {th }}$.
2. Calculating $R_{t h}$:

Method 1:
Connect terminal a to b (short).
Calculate the current from a to b. This is call $\mathrm{I}_{\text {short circuit }}$ -
$\mathrm{R}_{\mathrm{th}}=\mathrm{V}_{\mathrm{th}} / \mathrm{I}_{\text {short circuit }}$.
Method 2:
Find the input resistance looking into terminals a-b after all the independent sources have been turned off.
(Voltage sources become shorts, current sources become opens.)
Trick (if dependent sources present):
Apply a 1 A current source to terminals $a-b$, find $V_{a b}$ $\mathrm{R}_{\mathrm{th}}=\mathrm{V}_{\mathrm{ab}} / 1 \mathrm{~A}$.

```
Norton:
1. Calculating }\mp@subsup{R}{N}{}\mathrm{ :
R}=\mp@subsup{R}{\mathrm{ th }}{\mathrm{ (same method as 2 above)}
2. Calculating IN:
I
OR:
    I
```

Find the Thevenin \& Norton equivalent circuit of the circuit below with respect to terminals a and b :

$$
\begin{aligned}
v_{a b} & =2 v \\
& =V+h
\end{aligned}
$$

