EECS / CSE 70A MIDTERM #1

GRADING RUBRIC

Problem 1.

a.

Step	Points
Recognizing parallel combination $4\Omega \parallel 4\Omega$	1
Recognizing parallel combination $2\Omega \parallel 2\Omega$	1
Application of the parallel resistors formula (in either step 4 or step 5)	1
$4\Omega \parallel 4\Omega = 2\Omega$	1
$2\Omega \parallel 2\Omega = 1\Omega$	1
Recognizing series combination $2\Omega + 1\Omega = 3\Omega$	1
Recognizing series combination $4\Omega + 2\Omega = 6\Omega$	1
Recognizing parallel combination $2\Omega \parallel 3\Omega \parallel 6\Omega$	1
Application of the parallel resistors formula with 3 resistors OR	1
Calculating parallel combinations with 2 resistors at a time, twice	
Final answer = 1Ω	1
Total	10

b.

Step	Points
Recognizing parallel combinations $3\Omega \parallel 3\Omega \parallel 3\Omega$	3
Application of the parallel resistors formula in step 3	1
$3\Omega \parallel 3\Omega \parallel 3\Omega = 1\Omega$	1
$(2\Omega + 2\Omega) \parallel 0\Omega = 0\Omega,$ OR recognizing $(2\Omega + 2\Omega)$ being shorted, = 0Ω	2
Recognizing series combinations $1\Omega + 3\Omega + 1\Omega$	2
Final answer = 5Ω	1
Tota	10

Problem 2.

Step	Points
KCL equation at Node 1 in terms of node voltages	2
KCL equation at Node 2 in terms of node voltages	2
Recognizing that Node 3 voltage is set by the voltage source	2
Writing the expressions for currents i1 through i4	2
Using units in first and last steps (intermediate calculations may be left without units)	1
Carrying out the calculation steps correctly and clearly	2
Final Answers (Should be filled in the table)	
$V_1 = -1V$	2
$V_2 = 2V$	2
$V_3 = 6V$	2
i ₁ = 1A	2
i ₂ = -4A	2
i ₃ = -1A	2
i4 = -1A	2
Total	25

Problem 3.

Step	Points
KVL Loop equation for Mesh B	4
KVL Loop equation for Supermesh (A & C, OR, A & B & C)	5
$i_2 = I_A - I_B$ (accepted if inserted in step 1 or 2)	2
$i_3 = I_c - I_B$ (accepted if inserted in step 1 or 2)	2
$I_{C} + 1 = I_{A}$	2
Solving equations using Cramer's rule, elimination, and/or	5
substitution	5
Final Answers	
$I_A = i_1 = 5/9 A$	1
$I_B = 1/9 A, I_C = -4/9 A$	1
$i_2 = 4/9 A, i_3 = -5/9 A$	1
$v_1 = 4\Omega (-I_c) = 16/9 V$	1
$v_2 = 2i_2 + 1\Omega (I_c) = 4/9 V$	1
Total	25

Problem 4.

Step	Points
Mesh count = 20	5
Node count = 30	5
Remarks: Not counting the reference node/ground received full score Any systematic approach received credit	-
Total	10

Problem 5.

Step	Points
Solving the open circuit voltage for Thevenin voltage source	Any two on
Solving the short circuit current for Norton current source	the left
Solving for $R_{eq} = R_{Th} = R_{No}$ by killing all independent sources	5 5
Remark for the steps above: For attempting with correct approach 2pts, calculation steps 3pts	-
Finding any of V_{th} , I_{No} , R_{Th} using $V_{th} = I_{No} \times R_{Th}$	2
Drawing the correct Thevenin equivalent network	2
Annotating the correct source voltage and resistance in Thevenin circuit	2
Drawing the correct Norton equivalent network	2
Annotating the correct source current and resistance in Norton circuit	2
Total	20