\qquad Professor Peter Burke

Q1	Q2	Q3	Q4	Q5	Total
$/ 20$	$/ 25$	$/ 25$	$/ 10$	$/ 20$	$/ 100$

EECS / CSE 70A Midterm Exam \#1 SOLUTION KEY

DO NOT BEGIN THE EXAM UNTIL YOU ARE TOLD TO DO SO.

Print your name on all pages.

May $3^{\text {rd }}, 2016,11: 00$ am to $12: 20 \mathrm{pm}$
ID no.: \qquad Professor Peter Burke

PROBLEM 1: (20 points)

(a) Solve for the equivalent resistance, R_{eq}, across terminals a-b.

$$
\begin{aligned}
R_{e q} & =2 \Omega\|[(4 \Omega \| 4 \Omega)+(2 \Omega \| 2 \Omega)]\|(2 \Omega+4 \Omega)= \\
& =2 \Omega\|[2 \Omega+1 \Omega]\| 6 \Omega=2 \Omega\|\underbrace{3 \Omega \| 6 \Omega}_{2 \Omega}=2 \Omega\| 2 \Omega= \\
& =1 \Omega
\end{aligned}
$$

(b) Solve for the equivalent resistance, R_{eq}, across terminals $\mathrm{a}-\mathrm{b}$.

$$
\begin{aligned}
R_{e q} & =(3 \Omega\|3 \Omega\| 3 \Omega)+3 \Omega+1 \Omega= \\
& =1 \Omega+3 \Omega+1 \Omega=5 \Omega
\end{aligned}
$$

May $3^{\text {rd }}, 2016,11: 00$ am to $12: 20 \mathrm{pm}$
ID no.: \qquad Professor Peter Burke

PROBLEM 2: (25 points)

Use nodal analysis, and solve for the node voltages and the labeled currents.

Node 1 KCL: $\frac{V_{1}-0 \mathrm{~V}}{1 \Omega}+\frac{V_{1}-V_{2}}{1 \Omega}=0$
Node 2 KCL: $\frac{V_{2}-V_{1}}{1 \Omega}+6 \mathrm{~A}+\frac{V_{2}-0 \mathrm{~V}}{2 \Omega}+\frac{V_{2}-V_{3}}{2 \Omega}=0$
Node 3 set by voltage source: $V_{3}=6 \mathrm{~V}$
-Rearrange the equations and substitute V_{3}.
$2 V_{1}-V_{2}=0$
$-2 V_{1}+4 V_{2}=-6$ and we reach $\begin{aligned} & V_{1}=-1 \mathrm{~V} \\ & V_{2}=-2 \mathrm{~V}\end{aligned}$

Currents:
$i_{1}=\frac{V_{1}-V_{2}}{1 \Omega}=\frac{-1-(-2)}{1}=1 \mathrm{~A}$,
$i_{2}=\frac{V_{2}-V_{3}}{2 \Omega}=\frac{-2-6}{2}=-4 \mathrm{~A}$,
$i_{3}=\frac{V_{1}}{1 \Omega}=\frac{-1}{1}=-1 \mathrm{~A}$,
$i_{4}=\frac{V_{2}}{2 \Omega}=\frac{-2}{2}=-1 \mathrm{~A}$.
$\begin{array}{ll}V_{1}=-1 \mathrm{~V} & i_{1}=1 \mathrm{~A} \\ V_{2}=-2 \mathrm{~V} & i_{2}=-4 \mathrm{~A} \\ V_{3}=6 \mathrm{~V} & i_{3}=-1 \mathrm{~A} \\ & i_{4}=-1 \mathrm{~A}\end{array}$

May $3^{\text {rd }}, 2016,11: 00$ am to $12: 20 \mathrm{pm}$
ID no.: \qquad
Professor Peter Burke

PROBLEM 3: (25 points)

Use mesh analysis, and solve for the mesh currents and the labeled voltages.

Due to the 1A current source, KVL in meshes A and C cannot be written in terms of mesh currents. We need to use a supermesh.

Supermesh A\&C, KVL:

$$
2 \Omega \cdot I_{\mathrm{A}}+3 \Omega \cdot\left(I_{\mathrm{A}}-I_{\mathrm{B}}\right)+2 \Omega \cdot\left(I_{\mathrm{C}}-I_{\mathrm{B}}\right)+(2 \mathrm{~V} / \mathrm{A}) \cdot i_{2}+1 \Omega \cdot I_{\mathrm{C}}+4 \Omega \cdot I_{\mathrm{C}}=0 \quad \text { where } i_{2}=I_{\mathrm{A}}-I_{\mathrm{B}}
$$

Current source on common branch of meshes A and C: $I_{\mathrm{A}}-I_{\mathrm{C}}=1 \mathrm{~A}$
Mesh B, KVL: $2 \Omega \cdot I_{\mathrm{B}}+2 \Omega \cdot\left(I_{\mathrm{B}}-I_{\mathrm{C}}\right)+3 \Omega \cdot\left(I_{\mathrm{B}}-I_{\mathrm{A}}\right)=0$

- Rearrange equations
$\left.\begin{array}{l}7 I_{\mathrm{A}}-7 I_{\mathrm{B}}+7 I_{\mathrm{C}}=0 \\ I_{\mathrm{A}}-I_{\mathrm{C}}=1 \\ -3 I_{\mathrm{A}}+7 I_{\mathrm{B}}-2 I_{\mathrm{C}}=0\end{array}\right\} \begin{gathered}I_{\mathrm{A}}-I_{\mathrm{B}}+I_{\mathrm{C}}=0 \\ I_{\mathrm{A}}-I_{\mathrm{C}}=1 \\ -3 I_{\mathrm{A}}+7 I_{\mathrm{B}}-2 I_{\mathrm{C}}=0\end{gathered}$ substitute $I_{\mathrm{C}}=I_{\mathrm{A}}-1$ in the other two equations
We reach: $\left.\left.\left.\begin{array}{l}I_{\mathrm{A}}-I_{\mathrm{B}}+I_{\mathrm{A}}-1=0 \\ -3 I_{\mathrm{A}}+7 I_{\mathrm{B}}-2\left(I_{\mathrm{A}}-1\right)=0\end{array}\right\} \begin{array}{c}2 I_{\mathrm{A}}-I_{\mathrm{B}}=1 \\ -5 I_{\mathrm{A}}+7 I_{\mathrm{B}}=-2\end{array}\right\} \begin{array}{l}14 I_{\mathrm{A}}-7 I_{\mathrm{B}}=7 \\ -5 I_{\mathrm{A}}+7 I_{\mathrm{B}}=-2\end{array}\right\} I_{\mathrm{A}}=\frac{5}{9} \mathrm{~A}, I_{\mathrm{B}}=\frac{1}{9} \mathrm{~A}, I_{\mathrm{C}}=-\frac{4}{9} \mathrm{~A}$
The currents $i_{1}=I_{\mathrm{A}}=\frac{5}{9} \mathrm{~A}, \quad i_{2}=I_{\mathrm{A}}-I_{\mathrm{B}}=\frac{4}{9} \mathrm{~A}, \quad i_{3}=I_{\mathrm{C}}-I_{\mathrm{B}}=-\frac{5}{9} \mathrm{~A}$.
The voltages $V_{1}=-I_{\mathrm{C}} \cdot 4 \Omega=\frac{16}{9} \mathrm{~V}, V_{2}=(2 \mathrm{~V} / \mathrm{A}) \cdot i_{2}+1 \Omega \cdot I_{\mathrm{C}}=\frac{4}{9} \mathrm{~V}$

$$
\begin{array}{rlrl}
& i_{1} & =\frac{5}{9} \mathrm{~A} \\
I_{A} & =\frac{5}{9} \mathrm{~A} & i_{2} & =\frac{4}{9} \mathrm{~A} \\
I_{B} & =\frac{1}{9} \mathrm{~A} & i_{3} & =-\frac{5}{9} \mathrm{~A} \\
I_{C} & =-\frac{4}{9} \mathrm{~A} & V_{1} & =\frac{16}{9} \mathrm{~V} \\
& V_{2} & =\frac{4}{9} \mathrm{~V}
\end{array}
$$

May $3^{\text {rd }}, 2016,11: 00$ am to $12: 20 \mathrm{pm}$
ID no.: \qquad Professor Peter Burke

PROBLEM 4: (10 points)

Write down the number of meshes and nodes.

Number of nodes: 30
Number of meshes: 20

May $3^{\text {rd }}, 2016,11: 00$ am to $12: 20 \mathrm{pm}$
ID no.: \qquad Professor Peter Burke

PROBLEM 5: (20 points)

Obtain the Thévenin and Norton equivalent network representations as seen from the terminals a-b. (Please draw the equivalent network representations and annotate the source voltages or currents and resistances)

One needs to solve two of the following, since the third can be found by the previous two parameters:
$V_{\mathrm{Th}}, I_{\mathrm{No}}, R_{\mathrm{Th}}=R_{\mathrm{No}}$ where $V_{\mathrm{Th}}=I_{\mathrm{No}} R_{\mathrm{Th}}$

Open-circuit voltage at a-b terminals:

Let us write KCL at the top node in terms of V_{x} (the voltage thereof):
$+$
$-2 \mathrm{~A}+\frac{V_{x}-6 \mathrm{~V}}{3 \Omega}+\frac{V_{x}}{6 \Omega}=0$
$3 V_{x}=12+12=24 \mathrm{~V}$
$V_{x}=8 \mathrm{~V}$
By voltage division:

- $V_{\mathrm{Th}}=V_{\text {o.c. }}=3 \Omega \frac{V_{x}}{6 \Omega}$
$V_{\mathrm{Th}}=4 \mathrm{~V}$
Short-circuit current through a-b terminals:

Let us write KCL at the top node in terms of V_{y} (the voltage thereof):

$$
\begin{aligned}
& -2 \mathrm{~A}+\frac{V_{y}-6 \mathrm{~V}}{3 \Omega}+\frac{V_{y}}{3 \Omega}=0 \\
& 2 V_{y}=6+6=12 \mathrm{~V} \\
& V_{y}=6 \mathrm{~V}
\end{aligned}
$$

By Ohm's Law:

$$
\begin{aligned}
& I_{\mathrm{No}}=I_{\text {s.c. }}=\frac{V_{y}}{3 \Omega} \\
& I_{\mathrm{No}}=2 \mathrm{~A}
\end{aligned}
$$

May $3^{\text {rd }}, 2016,11: 00$ am to $12: 20 \mathrm{pm}$
ID no.: \qquad Professor Peter Burke

Equivalent resistance found by killing independent sources:

Finally we have

$$
\begin{gathered}
v_{\mathrm{Th}}=4 \mathrm{~V} \\
i_{\mathrm{No}}=2 \mathrm{~A} \\
R_{\mathrm{No}}=R_{\mathrm{Th}}=\frac{v_{\mathrm{Th}}}{i_{\mathrm{No}}}=2 \Omega
\end{gathered}
$$

