EECS / CSE 70A MIDTERM #1

GRADING RUBRIC

Problem 1.

Step	Points
Recognize/use/state $V_{+} = V_{-}$ (2pts.) and no current i ₊ =i.=0 (2pts.)	4
Finding V_0 in terms of V_1 and V_2 (Correct attempt 2pts. Result 2pts.)	4
Finding V ₊ in terms of V ₂ (Correct attempt 2pts. Result 2pts.)	4
Find V_0 in terms of V_1 and V_2	3
Total for part (a) 15pts	
Substitute V_1 and V_2 values in V_o	2
Find i ₁ (Correct expression 2pts. Correct value 1pt)	3
Find i ₂ (Correct expression 2pts. Correct value 1pt)	3
Total for part (b) 8pts	
Units (Initial equations 1pt. Final results 1pt.)	2
Total	25

Problem 2.

Step	Points
Recognize that the inductor is short circuit at $t = 0^{-1}$	2
Recognize that 12Ω is short circuited at t = 0 ⁻	2
Find $i_{L}(t = 0^{-})$ (Correct expression 2pts, result 1pt.)	3
Total for steps regarding $t = 0^{-1}$ 7pts	
For transient period, writing the correct time constant equation	2
After switch is open, using/recognizing correct resistance	2
Finding the correct time constant value	2
Total for steps regarding transient period 6pts	
Recognize source free discharge	
or	2
Reason justify i∟(∞) =0	
Give the generic formula for $i_{L}(t)$ when t>0	2
Correct final result for $i_{L}(t)$ (If the numbers are wrong due to a	2
mistake in previous steps, still given 1pt)	L
Total for steps regarding i∟(t) 6pts	
Attempt calculating v_{L} using i_{L} and/or recognize $v_{L}(\infty) = 0$	2
Use $v_L = L \operatorname{di}_L/\operatorname{dt}$, or $v_L = (-1/T)L \operatorname{i}_L$	1
Formula for $v_{L}(t)$	1
Final correct result for $v_L(t)$	1
Total for steps regarding v _L (t) 5pts	
Units	1
Total	25

Problem 3.

Approach 1: First finding V, then I

Step	Points
Finding the source voltage phasor Vs	3
Impedance terms (R & jωL)	3
Voltage division expression V = $(j\omega L/(R + j\omega L))V_s$	3
Some simplifications/manipulations toward polar/exponential or rectangular/Cartesian form for V	4
Arriving at a polar/exponential or rectangular/Cartesian form	2
Correct final expression for the phasor V (answer to part (a))	1
Applying Ohm's law I = V/Z_L	2
Some simplifications/manipulations toward polar/exponential or rectangular/Cartesian form for I	4
Arriving at a polar/exponential or rectangular/Cartesian form	2
Correct final expression for the phasor I (answer to part (b))	1
Total	25

Approach 2: First finding I, then V

Step	Points
Finding the source voltage phasor Vs	3
Impedance terms (R & jωL)	3
Equivalent impedance $Z_{eq} = R + j\omega L$ (series combination)	1
Applying Ohm's law I = V_s/Z_{eq}	2
Some simplifications/manipulations toward polar/exponential or	4
rectangular/Cartesian form for I	
Arriving at a polar/exponential or rectangular/Cartesian form	2
Correct final expression for the phasor I (answer to part (b))	1
Applying Ohm's law V = IZ_{L}	2
Some simplifications/manipulations toward polar/exponential or	4
rectangular/Cartesian form for V	
Arriving at a polar/exponential or rectangular/Cartesian form	2
Correct final expression for the phasor V (answer to part (a))	1
Total	25

Problem 4.

Step	Points
Impedance of capacitor = $1/(j\omega C)$	3
Impedance of inductor = $j\omega L$	3
Equivalent impedance expression for series combination	4
$Z_{eq}(\omega) = R + 1/(j\omega C) + j\omega L$	
Simplifications/manipulations toward x + jy form	3
Arriving at an x + jy form	2
Correct value of x (answer to part (b))	1
Correct value of y (answer to part (c))	1
Equating the imaginary part to zero, $Im(Z_{eq}(\omega)) = 0$	3
Obtaining some equation equivalent to $\omega = 1/\sqrt{(LC)} = \sqrt{(10^6/4)}$	3
Calculating numerical value of ω , 500	1
Correct unit of ω, rad/s	1
Total	25