EECS / CSE 70A MIDTERM \#1

GRADING RUBRIC

Problem 1.

Step	Points
Recognize/use/state $\mathrm{V}_{+}=\mathrm{V}$. (2pts.) and no current $\mathrm{i}_{+}=\mathrm{i} .=0$ (2pts.)	4
Finding V_{0} in terms of V_{1} and V . (Correct attempt 2pts. Result 2pts.)	4
Finding V_{+}in terms of V_{2} (Correct attempt 2pts. Result 2pts.)	4
Find V_{0} in terms of V_{1} and V_{2}	3
Total for part (a) 15pts	
Substitute V_{1} and V_{2} values in V_{0}	2
Find i_{1} (Correct expression 2pts. Correct value 1pt)	3
Find i_{2} (Correct expression 2pts. Correct value 1pt)	3
Total for part (b) 8pts	
Units (Initial equations 1pt. Final results 1pt.)	2
Total	25

Problem 2.

Step	Points
Recognize that the inductor is short circuit at $\mathrm{t}=0^{-}$	2
Recognize that 12Ω is short circuited at $\mathrm{t}=0^{-}$	2
Find $\mathrm{L}_{\mathrm{L}}\left(\mathrm{t}=0^{-}\right) \quad$ (Correct expression 2pts, result 1pt.)	3
Total for steps regarding t $=0^{-} 7 \mathrm{pts}$	
For transient period, writing the correct time constant equation	2
After switch is open, using/recognizing correct resistance	2
Finding the correct time constant value	2
Total for steps regarding transient period 6pts	
Recognize source free discharge or Reason justify $\mathrm{i}_{\mathrm{L}}(\infty)=0$	2
Give the generic formula for $\mathrm{i}_{L}(\mathrm{t})$ when $\mathrm{t}>0$	2
Correct final result for $\mathrm{i}_{\mathrm{L}}(\mathrm{t})$ (If the numbers are wrong due to a mistake in previous steps, still given 1 pt)	2
Total for steps regarding $\mathrm{i}_{L}(\mathrm{t}) \quad 6 \mathrm{pts}$	
Attempt calculating v_{L} using i_{L} and/or recognize $\mathrm{v}_{\mathrm{L}}(\infty)=0$	2
Use $\mathrm{V}_{\mathrm{L}}=\mathrm{L}$ di $\mathrm{V}^{\prime} \mathrm{dt}$, or $\mathrm{v}_{\mathrm{L}}=(-1 / \mathrm{T}) \mathrm{L} \mathrm{i}_{\mathrm{L}}$	1
Formula for $\mathrm{v}_{\mathrm{L}}(\mathrm{t})$	1
Final correct result for $\mathrm{v}_{\mathrm{L}}(\mathrm{t})$	1
Total for steps regarding $\mathrm{v}_{\mathrm{L}}(\mathrm{t}) \quad 5 \mathrm{pts}$	
Units	1
Total	25

Problem 3.

Approach 1: First finding V, then I

Step	Points
Finding the source voltage phasor V_{s}	3
Impedance terms $(\mathrm{R} \mathrm{\&} \mathrm{j} \mathrm{\omega L)}$	3
Voltage division expression $\mathrm{V}=(\mathrm{j} \omega \mathrm{L} /(\mathrm{R}+\mathrm{j} \omega \mathrm{L})) \mathrm{V}_{\mathrm{s}}$	3
Some simplifications/manipulations toward polar/exponential or rectangular/Cartesian form for V	4
Arriving at a polar/exponential or rectangular/Cartesian form	2
Correct final expression for the phasor V (answer to part (a))	1
Applying Ohm's law I = V/Z	2
Some simplifications/manipulations toward polar/exponential or rectangular/Cartesian form for I	4
Arriving at a polar/exponential or rectangular/Cartesian form	2
Correct final expression for the phasor I (answer to part (b))	1
	25

Approach 2: First finding I, then V

Step	Points			
Finding the source voltage phasor V_{s}	3			
Impedance terms (R \& jwL)	3			
Equivalent impedance $\mathrm{Z}_{\text {eq }}=\mathrm{R}+\mathrm{j} \omega \mathrm{L}$ (series combination)	1			
Applying Ohm's law I = $\mathrm{V}_{\mathrm{s}} / \mathrm{Z}_{\text {eq }}$	2			
Some simplifications/manipulations toward polar/exponential or rectangular/Cartesian form for I	4			
Arriving at a polar/exponential or rectangular/Cartesian form	2			
Correct final expression for the phasor I (answer to part (b))	1			
Applying Ohm's law V = Z_{L}	2			
Some simplifications/manipulations toward polar/exponential or rectangular/Cartesian form for V	4			
Arriving at a polar/exponential or rectangular/Cartesian form	2			
Correct final expression for the phasor V (answer to part (a))	1			
Total				25

Problem 4.

Step	Points
Impedance of capacitor $=1 /(\mathrm{j} \omega \mathrm{C}) \quad$	3
Impedance of inductor $=$ j $\omega \mathrm{L}$	3
Equivalent impedance expression for series combination $Z_{\text {eq }}(\omega)=\mathrm{R}+1 /(\mathrm{j} \omega \mathrm{C})+\mathrm{j} \omega \mathrm{L}$	4
Simplifications/manipulations toward $\mathrm{x}+\mathrm{jy}$ form	3
Arriving at an $x+$ jy form	2
Correct value of $\mathrm{x}($ answer to part $(\mathrm{b}))$	1
Correct value of $y($ answer to part $(\mathrm{c}))$	1
Equating the imaginary part to zero, $\operatorname{Im}\left(Z_{\text {eq }}(\omega)\right)=0$	3
Obtaining some equation equivalent to $\omega=1 / \sqrt{ }(\mathrm{LC})=\sqrt{ }\left(10^{6} / 4\right)$	3
Calculating numerical value of $\omega, 500$	1
Correct unit of ω, rad/s	1
	25

