EECS/CSE 70A Network Analysis I

Homework #2 Solution Key Problem 1: (VCCS) Find I_{cb} and I_2 .

Problem 1 Solution I_{cb} is the current of the voltagecontrolled current source flowing from c to b.

$$I_{cb} = (2A/V) V_{ac} \quad \text{where } V_{ac} = 1.5V$$
$$I_{cb} = (2A/V) \times 1.5V = 3A$$

KCL at the top node $I_2 = I_{cb} + 2A = 5A$

Problem 2 Solution Apply KCL at node a. $7A = I_1 + I_2$ where $I_1 = I_2 + 3A$ is given Substitute $I_2 = I_1 - 3A$ $7A = I_1 + I_1 - 3A$ $10A = 2I_1$ $I_1 = 5A$, $I_2 = I_1 - 3A = 2A$ V_{bc} is the voltage across the currentcontrolled voltage source

 $V_{bc} = (3V/A) \times 5A = 15V$

Problem 3: (VCVS) Find V_{bc} and V_{ab}. (15pts.)

Problem 3 Solution V_{bc} is the voltage across the voltagecontrolled voltage source $V_{bc} = 0.5V_{ac}$

 V_{ac} is the voltage across 9V voltage source, $V_{ac} = 9V$ $V_{bc} = 0.5 \times 9V = 4.5V$

$$V_{ab} = V_{ac} + V_{cb} \quad \text{where } V_{cb} = -V_{bc}$$
$$V_{ab} = V_{ac} - V_{bc} = 9V - 4.5V = 4.5V$$

Problem 4 Solution

$$R_{\text{eq}} = \left[\left(\left\{ \left[\left(R_4 + R_5 \right) \| R_6 \right] + R_3 \right\} \| R_7 \| R_8 \right) + R_1 + R_2 \right] \| R_9 \right]$$

Problem 5: Find R_{eq} . (15pts.)

Problem 5 Solution

$$R_{\text{eq}} = (R_{10} + R_{11}) || R_9 || [(R_5 || R_6) + (R_7 || R_8)] || [(R_1 || R_2) + (R_3 || R_4)] || R_{12}$$

See the same circuit drawn again on the next page where you can recognize the parallel and series components easily.

Problem 5: Find R_{eq} . (15pts.)

Problem 6: All of the resistors below are $R_0^{}\,\Omega.$ Find $R_{eq}^{}$. (10pts.)

Problem 6 Solution

$$R_{eq} = \left\{ \left[\left(R_0 + R_0 \right) \| \left(R_0 + R_0 \right) \right] + R_0 + \left[\left(R_0 + R_0 \right) \| \left(R_0 + R_0 \right) \right] \right\} \| R_0$$

$$R_{eq} = \left\{ \left[\underbrace{\left(\frac{R_0 + R_0}{2R_0} \right) \| \left(\frac{R_0 + R_0}{2R_0} \right)}_{2R_0} \right] + R_0 + \left[\underbrace{\left(\frac{R_0 + R_0}{2R_0} \right) \| \left(\frac{R_0 + R_0}{2R_0} \right)}_{2R_0} \right] \right\} \| R_0$$

$$= \left\{ \underbrace{\left[2R_0 \| 2R_0 \right]}_{R_0} + R_0 + \underbrace{\left[2R_0 \| 2R_0 \right]}_{R_0} \right\} \| R_0$$

$$= \left\{ R_0 + R_0 + R_0 \right\} \| R_0 = 3R_0 \| R_0 = \left(\frac{1}{3R_0} + \frac{1}{R_0} \right)^{-1} = \frac{3R_0}{4}$$

Problem 7: (Potentiometer) In the circuit below, the wiper divides the potentiometer resistance R_p between two resistances $R_p(1-\alpha)$ and $R_p\alpha$ where $0<\alpha<1$. α is a parameter modeling the wiper's position. Find the output voltage V_{out} as a function of V_s , R_s , R_p and α . (15pts.)

