EECS/CSE 70A Network Analysis I

Homework \#2

Solution Key

Problem 1: (VCCS) Find I_{cb} and I_{2}. (15pts.)

Problem 1 Solution

I_{cb} is the current of the voltagecontrolled current source flowing from c to b .

$$
\mathrm{I}_{\mathrm{cb}}=(2 \mathrm{~A} / \mathrm{V}) \mathrm{V}_{\mathrm{ac}} \quad \text { where } \mathrm{V}_{\mathrm{ac}}=1.5 \mathrm{~V}
$$

$$
\mathrm{I}_{\mathrm{cb}}=(2 \mathrm{~A} / \mathrm{V}) \times 1.5 \mathrm{~V}=3 \mathrm{~A}
$$

KCL at the top node

$$
\mathrm{I}_{2}=\mathrm{I}_{\mathrm{cb}}+2 \mathrm{~A}=5 \mathrm{~A}
$$

Problem 2: (CCVS) Find I_{1}, I_{2} and $V_{b c}$

where $\mathrm{V}_{\mathrm{ac}}=1.5 \mathrm{~V}$

Problem 2 Solution

Apply KCL at node a.
$7 \mathrm{~A}=\mathrm{I}_{1}+\mathrm{I}_{2}$ where $\mathrm{I}_{1}=\mathrm{I}_{2}+3 \mathrm{~A}$ is given Substitute $\mathrm{I}_{2}=\mathrm{I}_{1}-3 \mathrm{~A}$
$7 \mathrm{~A}=\mathrm{I}_{1}+\mathrm{I}_{1}-3 \mathrm{~A}$
$10 \mathrm{~A}=2 \mathrm{I}_{1}$
$\mathrm{I}_{1}=5 \mathrm{~A}$,
$\mathrm{I}_{2}=\mathrm{I}_{1}-3 \mathrm{~A}=2 \mathrm{~A}$
V_{bc} is the voltage across the currentcontrolled voltage source

$$
\mathrm{V}_{\mathrm{bc}}=(3 \mathrm{~V} / \mathrm{A}) \times 5 \mathrm{~A}=15 \mathrm{~V}
$$

Problem 3: (VCVS) Find V_{bc} and V_{ab}. (15pts.)

Problem 3 Solution

V_{bc} is the voltage across the voltagecontrolled voltage source
$\mathrm{V}_{\mathrm{bc}}=0.5 \mathrm{~V}_{\mathrm{ac}}$
V_{ac} is the voltage across 9 V voltage source, $\mathrm{V}_{\mathrm{ac}}=9 \mathrm{~V}$
$\mathrm{V}_{\mathrm{bc}}=0.5 \times 9 \mathrm{~V}=4.5 \mathrm{~V}$
$\mathrm{V}_{\mathrm{ab}}=\mathrm{V}_{\mathrm{ac}}+\mathrm{V}_{\mathrm{cb}} \quad$ where $\mathrm{V}_{\mathrm{cb}}=-\mathrm{V}_{\mathrm{bc}}$
$\mathrm{V}_{\mathrm{ab}}=\mathrm{V}_{\mathrm{ac}}-\mathrm{V}_{\mathrm{bc}}=9 \mathrm{~V}-4.5 \mathrm{~V}=4.5 \mathrm{~V}$

Problem 4: Find $\mathrm{R}_{\text {eq }}$. Please use the parallel sign "//" as discussed in class. (15pts.)

Problem 4 Solution

$$
R_{\mathrm{eq}}=\left[\left(\left\{\left[\left(R_{4}+R_{5}\right) \| R_{6}\right]+R_{3}\right\}\left\|R_{7}\right\| R_{8}\right)+R_{1}+R_{2}\right] \| R_{9}
$$

Problem 5: Find R_{eq}.
(15pts.)

Problem 5 Solution

$$
R_{\mathrm{eq}}=\left(R_{10}+R_{11}\right)\left\|R_{9}\right\|\left[\left(R_{5} \| R_{6}\right)+\left(R_{7} \| R_{8}\right)\right]\left\|\left[\left(R_{1} \| R_{2}\right)+\left(R_{3} \| R_{4}\right)\right]\right\| R_{12}
$$

See the same circuit drawn again on the next page where you can recognize the parallel and series components easily.

Problem 5: Find R_{eq}.
(15pts.)

Problem 5 Solution cont'd

Problem 6: All of the resistors below are $R_{0} \Omega$. Find $R_{e q}$.
(10pts.)

Problem 6 Solution

$$
R_{\mathrm{eq}}=\left\{\left[\left(R_{0}+R_{0}\right) \|\left(R_{0}+R_{0}\right)\right]+R_{0}+\left[\left(R_{0}+R_{0}\right) \|\left(R_{0}+R_{0}\right)\right]\right\} \| R_{0}
$$

$$
\begin{aligned}
R_{\mathrm{eq}} & =\{[\underbrace{\left(R_{0}+R_{0}\right)}_{2 R_{0}} \| \underbrace{\left(R_{0}+R_{0}\right)}_{2 R_{0}}]+R_{0}+[\underbrace{\left(R_{0}+R_{0}\right)}_{2 R_{0}} \| \underbrace{\left(R_{0}+R_{0}\right)}_{2 R_{0}}]\} \| R_{0} \\
& =\{\underbrace{\left[2 R_{0} \| 2 R_{0}\right]}_{R_{0}}+R_{0}+\underbrace{\left[2 R_{0} \| 2 R_{0}\right]}_{R_{0}}\} \| R_{0}
\end{aligned}
$$

$$
=\left\{R_{0}+R_{0}+R_{0}\right\}\left\|R_{0}=3 R_{0}\right\| R_{0}=\left(\frac{1}{3 R_{0}}+\frac{1}{R_{0}}\right)^{-1}=\frac{3 R_{0}}{4}
$$

Problem 7: (Potentiometer) In the circuit below, the wiper divides the potentiometer resistance R_{p} between two resistances $R_{p}(1-\alpha)$ and $R_{p} \alpha$ where $0<\alpha<1$. α is a parameter modeling the wiper's position. Find the output voltage $V_{\text {out }}$ as a function of V_{s}, R_{s}, R_{p} and α. (15pts.)

Problem 7 Solution

The circuit is equivalent to

