EECS/CSE 70A Network Analysis I

Homework \#3
Solution Key

Problem 1: (KCL, KVL, Ohm's Law) Find currents i_{1}, i_{2}, i_{3}. (10pts.)

Problem 1 Solution

KVL in the left loop:

$$
4 i_{1}+2=4 i_{2}
$$

KVL in the right loop:

$$
4 i_{2}+10 i_{3}+6=0
$$

KCL in the top node:

$$
i_{3}=i_{1}+i_{2}
$$

Substitute (3) in (2):

$$
\begin{array}{r}
4 i_{2}+10\left(i_{1}+i_{2}\right)+6=0 \\
i_{2}=\frac{-6-10 i_{1}}{14}=\frac{-3-5 i_{1}}{7}(4) \tag{4}
\end{array}
$$

Substitute (4) in (1): $4 i_{1}+2=4 \times \frac{-3-5 i_{1}}{7}$

$$
\begin{aligned}
& 28 i_{1}+14=-12-20 i_{1} \\
& i_{1}=-\frac{26}{48} \mathrm{~A}=-\frac{13}{24} \mathrm{~A}
\end{aligned}
$$

$\operatorname{Using}(1): \quad i_{2}=i_{1}+\frac{1}{2}=-\frac{13}{24}+\frac{1}{2}=-\frac{1}{24} \mathrm{~A}$
$\operatorname{Using}(3): \quad i_{3}=i_{1}+i_{2}=-\frac{13}{24}-\frac{1}{24}=-\frac{14}{24} \mathrm{~A}$

Problem 2: Use nodal analysis and find all node voltages and the currents i_{1}, i_{2}, i_{3}. (10pts.)

Problem 2 Solution

Nodal Analysis by Inspection
KCL at node 1: $\quad \frac{V_{1}}{5}+\frac{V_{1}-V_{2}}{2}+\frac{V_{1}-V_{3}}{8}=0$
node 2 is set by the source: $\quad V_{2}=5 \mathrm{~V}$
KCL at node 3: $\frac{V_{3}-V_{2}}{4}+\frac{V_{3}-V_{1}}{8}-2 v_{0}=0$

$$
\frac{V_{3}-V_{2}}{4}+\frac{V_{3}-V_{1}}{8}-2\left(V_{2}-V_{3}\right)=0
$$

where $v_{0}=V_{2}-V_{3}$

By using node 2 voltage and rearranging the KCL equations

$$
\left.\begin{array}{c}
33 V_{1}-5 V_{3}=100 \\
-V_{1}+19 V_{3}=90
\end{array}\right\} \begin{gathered}
33 V_{1}-5 V_{3}=100 \\
-33 V_{1}+627 V_{3}=2970
\end{gathered}
$$

Problem 2: Use nodal analysis and find all node voltages and the currents i_{1}, i_{2}, i_{3}. (10pts.)

Problem 2 Solution cont'd

$V_{3}=\frac{3070}{622} \mathrm{~V}=4.94 \mathrm{~V}$
$V_{1}=\frac{100+5 \times \frac{3070}{622}}{33} \mathrm{~V}=\frac{77850}{20625} \mathrm{~V} \approx 3.78 \mathrm{~V}$
Labeled currents are

$$
\begin{array}{ll}
i_{1}=\frac{V_{2}-V_{1}}{2}=\frac{5-3.78}{2}=0.61 \mathrm{~A} & \\
i_{2}=\frac{V_{3}-V_{2}}{4}=\frac{4.94-5}{4}=-0.015 \mathrm{~A} \longleftarrow & \text { CORRECTION } \\
i_{3}=\frac{V_{3}-V_{1}}{8}=\frac{4.94-3.78}{8}=0.145 \mathrm{~A} &
\end{array}
$$

Problem 3: Use nodal analysis and find all node voltages and the currents $i_{1}, i_{2}, i_{3}, i_{4}$. (10pts.)

Problem 3 Solution Nodal Analysis by Inspection node 1 voltage set by the source: $V_{1}=6 \mathrm{~V}$

KCL at node 2: $\frac{V_{2}-V_{1}}{5}+\frac{V_{2}}{2}+\frac{V_{2}}{2}+\frac{V_{2}-V_{3}}{1}=0$
Due to the CCVC at the top branch we cannot write KCL at node 3. But we can apply KVL through the top branch $V_{1}=V_{3}+4 i_{2}$

$$
=V_{3}+4\left(\frac{V_{3}-V_{2}}{1}\right)
$$

Problem 3: Use nodal analysis and find all node voltages and the currents $i_{1}, i_{2}, i_{3}, i_{4}$. (10pts.)

Problem 3 Solution cont'd

Let us substitute node 1 voltage and rewrite the two equations

$$
\left.\begin{array}{l|l}
11 V_{2}-5 V_{3}=6 \\
-4 V_{2}+5 V_{3}=6
\end{array}\right\} \quad \begin{aligned}
& V_{2}=\frac{12}{7} \mathrm{~V}=1.71 \mathrm{~V} \\
& V_{3}=\frac{11 V_{2}-6}{5}=\frac{18}{7} \mathrm{~V}=2.57 \mathrm{~V}
\end{aligned}
$$

$$
\begin{aligned}
& i_{1}=\frac{V_{1}-V_{2}}{5}=\frac{6-\frac{12}{7}}{5}=\frac{6}{7} \mathrm{~A}=0.86 \mathrm{~A} \\
& i_{2}=\frac{V_{3}-V_{2}}{1}=\frac{18}{7}-\frac{12}{7}=\frac{6}{7} \mathrm{~A} \\
& i_{3}=i_{4}=\frac{V_{2}-0}{2}=\frac{6}{7} \mathrm{~A}
\end{aligned}
$$

Problem 4: Write all node voltage equations and put them in the matrix form. (You do not need to solve.) (10pts.)

Problem 4 Solution

(Note that v_{a} is a given parameter, not a variable of nodal analysis)
We apply supernode when there is a voltage source in the branch connected to a node
KCL at node 1: $-2 v_{a}+\frac{V_{1}-V_{2}}{10}+\frac{V_{1}-V_{4}}{20}=0$
KCL at supernode 2\&6
$\frac{V_{2}-V_{1}}{10}+\frac{V_{2}-V_{3}}{20}+\frac{V_{2}-V_{4}}{10}+\frac{V_{2}-V_{5}}{20}+\frac{V_{6}}{30}+\frac{V_{6}-V_{5}}{10}=0$
KVL connecting nodes $2 \& 6: \quad V_{2}-V_{6}=3 v_{a}$ (3)
KCL at supernode 3\&5: $\frac{V_{3}-V_{2}}{20}+\frac{V_{5}-V_{2}}{20}+\frac{V_{5}-V_{6}}{10}=0$
KVL connecting nodes $3 \& 5: \quad V_{3}-V_{5}=v_{a}$

Problem 4: Write all node voltage equations and put them in the matrix form. (You do not need to solve.) (10pts.)

Problem 4 Solution cont'd

KCL at node 4: $\frac{V_{4}-V_{1}}{20}+\frac{V_{4}}{50}+\frac{V_{4}-V_{2}}{10}=0$
We have 6 unknown node voltages and 6 equations, now let us rewrite the equations

$$
\begin{align*}
& 3 V_{1}-2 V_{2}-V_{4}=40 v_{a} \tag{1}\\
& -6 V_{1}+18 V_{2}-3 V_{3}-6 V_{4}-9 V_{5}+8 V_{6}=0 \tag{2}\\
& V_{2}-V_{6}=3 v_{a} \\
& -2 V_{2}+V_{3}+3 V_{5}-2 V_{6}=0 \\
& V_{3}-V_{5}=v_{a} \\
& -5 V_{1}-10 V_{2}+17 V_{4}=0 \tag{6}
\end{align*}
$$

Problem 4: Write all node voltage equations and put them in the matrix form. (You do not need to solve.) (10pts.)

Problem 4 Solution cont'd

$$
\left(\begin{array}{cccccc}
3 & -2 & 0 & -1 & 0 & 0 \\
-6 & 18 & -3 & -6 & -9 & 8 \\
0 & 1 & 0 & 0 & 0 & -1 \\
0 & -2 & 1 & 0 & 3 & -2 \\
0 & 0 & 1 & 0 & -1 & 0 \\
-5 & -10 & 0 & 17 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
V_{1} \\
V_{2} \\
V_{3} \\
V_{4} \\
V_{5} \\
V_{6}
\end{array}\right)=\left(\begin{array}{c}
40 v_{a} \\
0 \\
3 v_{a} \\
0 \\
v_{a} \\
0
\end{array}\right)
$$

Problem 5: Use mesh analysis to find all the labeled currents and node voltages. (10pts.)

Problem 5 Solution

Note the annotated loop currents
KVL at loop 1: $\quad 4\left(I_{1}-I_{2}\right)+5\left(I_{1}-I_{3}\right)+2 I_{1}=0$
KVL at loop 2: $1.5 I_{1}+10\left(I_{2}-I_{3}\right)+4\left(I_{2}-I_{1}\right)=0$
where we used $i_{1}=I_{1}$
KVL at loop 3: $-4+5\left(I_{3}-I_{1}\right)+10\left(I_{3}-I_{2}\right)+8 I_{3}=0$

Rewriting all equations
$11 I_{1}-4 I_{2}-5 I_{3}=0$
$-5 I_{1}+28 I_{2}-20 I_{3}=0$
$-5 I_{1}-10 I_{2}+23 I_{3}=4 \quad$ (3)

$$
\left(\begin{array}{ccc}
11 & -4 & -5 \tag{1}\\
-5 & 28 & -20 \\
-5 & -10 & 23
\end{array}\right)\left(\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
4
\end{array}\right)
$$

Problem 5: Use mesh analysis to find all the labeled currents and node voltages. (10pts.)

Problem 5 Solution cont'd

Using Cramer's rule or matrix operations:

$$
\begin{aligned}
& I_{1}=0.2863 \mathrm{~A}, I_{2}=0.3188 \mathrm{~A}, I_{3}=0.3748 \mathrm{~A} . \\
& i_{1}=I_{1}=0.2863 \mathrm{~A} \\
& i_{2}=I_{1}-I_{2}=-0.0325 \mathrm{~A} V_{1}=-I_{1} \times 2 \Omega+4 \mathrm{~V}=3.4275 \mathrm{~V} \\
& i_{3}=I_{2}=0.3188 \mathrm{~A} \\
& V_{2}=\left(I_{1}-I_{3}\right) \times 5 \Omega+4 \mathrm{~V}=3.5576 \mathrm{~V} \\
& i_{4}=I_{3}-I_{1}=0.0885 \mathrm{~A} \\
& V_{3}=I_{3} \times 8 \Omega=2.998 \mathrm{~V} \\
& i_{5}=I_{3}-I_{2}=0.056 \mathrm{~A} \\
& i_{6}=-I_{3}=-0.3748 \mathrm{~A}
\end{aligned}
$$

Problem 6: Use mesh analysis to find all the labeled currents and node voltages. (10pts.)

Problem 6 Solution

Loop 1 current is set by the current source: $I_{1}=-3 \mathrm{~A}$
KVL at loop 2: $30\left(I_{2}-I_{1}\right)+40\left(I_{2}-I_{3}\right)-5=0$
KVL at loop 3: $\quad 5+40\left(I_{3}-I_{2}\right)+20 I_{3}=0$
Rewriting KVL equations by substituting I_{1}

$$
\left.\begin{array}{l}
14 I_{2}-8 I_{3}=-17 \\
-8 I_{2}+12 I_{3}=-1
\end{array}\right\}-16 I_{2}-24 I_{3}=-24 I_{3}=-2.2 .
$$

Labeled currents and voltages are

$$
\begin{array}{ll}
i_{1}=I_{1}=-3 \mathrm{~A} & i_{4}=I_{2}-I_{3}=-0.597 \mathrm{~A} \\
i_{2}=I_{1}-I_{2}=-0.961 \mathrm{~A} & i_{5}=I_{3}=-1.442 \mathrm{~A} \\
i_{3}=I_{2}=-2.039 \mathrm{~A} &
\end{array}
$$

Problem 7: Write all the mesh current equations and put them in the matrix form. You don't have to solve. (10pts.)

Problem 7 Solution

We need to use superloops by-passing the current sources, and use the current sources to obtain equations
KVL at superloop $1 \& 2$:

$$
-16+200 I_{2}+100\left(I_{2}-I_{4}\right)+500\left(I_{1}-I_{3}\right)=0
$$

Current source inside the super loop $1 \& 2$:

$$
I_{1}-I_{2}=2
$$

KVL at superloop 3\&4

$80 I_{3}+500\left(I_{3}-I_{1}\right)+100\left(I_{4}-I_{2}\right)+120\left(I_{4}-I_{5}\right)+120\left(I_{3}-I_{5}\right)=0$
Current source inside the super loop $3 \& 4$:

$$
I_{3}-I_{4}=4 I_{2}
$$

KVL at loop 5:

$$
120\left(I_{5}-I_{3}\right)+120\left(I_{5}-I_{4}\right)+250 I_{4}=0
$$

Problem 7: Write all the mesh current equations and put them in the matrix form. You don't have to solve. (10pts.)

Problem 7 Solution cont'd

Rewrite all equations

$$
\begin{equation*}
500 I_{1}+300 I_{2}-500 I_{3}-100 I_{4}=16 \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& I_{1}-I_{2}=2 \\
& -500 I_{1}-100 I_{2}+700 I_{3}+220 I_{4}-240 I_{5}=0 \tag{3}\\
& -4 I_{2}+I_{3}-I_{4}=0 \\
& -120 I_{3}-120 I_{4}+490 I_{5}=0
\end{align*}
$$

$\left(\begin{array}{ccccc}500 & 300 & -500 & -100 & 0 \\ 1 & -1 & 0 & 0 & 0 \\ -500 & -100 & 700 & 220 & -240 \\ 0 & -4 & 1 & -1 & 0 \\ 0 & 0 & -120 & -120 & 490\end{array}\right)\left(\begin{array}{c}I_{1} \\ I_{2} \\ I_{3} \\ I_{4} \\ I_{5}\end{array}\right)=\left(\begin{array}{c}16 \\ 2 \\ 0 \\ 0 \\ 0\end{array}\right)$

Problem 8: Use both nodal and mesh analyses to solve for all the node voltages and loop currents. (10pts.)

Problem 8 Solution

Nodal Analysis
KCL at node 1: $\quad-3+\frac{V_{1}-V_{2}}{10}=0$
KCL at node $2: \frac{V_{2}-V_{1}}{10}+\frac{V_{2}}{30}+\frac{V_{2}}{5}+\frac{V_{2}-V_{3}}{20}=0$
Node 3 voltage is set by the source: $V_{3}=4 \mathrm{~V}$
Rewrite the equation substituting node 3 voltage

$$
\left.\begin{array}{c}
V_{1}-V_{2}=30 \\
-6 V_{1}+23 V_{2}=12
\end{array}\right\} \begin{gathered}
-6 V_{1}+23\left(V_{1}-30\right)=12 \\
17 V_{1}=702
\end{gathered}
$$

$$
\begin{aligned}
& V_{1}=\frac{702}{17} \mathrm{~V}=41.3 \mathrm{~V} \\
& V_{2}=V_{1}-30=11.3 \mathrm{~V}
\end{aligned}
$$

Problem 8: Use both nodal and mesh analyses to solve for all the node voltages and loop currents. (10pts.)

Problem 8 Solution cont'd

Mesh Analysis

Loop 1 current set by the source: $I_{1}=3 \mathrm{~A}$
KVL at loop 2: $\quad 5\left(I_{2}-I_{1}\right)+30\left(I_{2}-I_{3}\right)=0$
KVL at loop 3: $\quad 30\left(I_{3}-I_{2}\right)+20 I_{3}+4=0$
Rewrite the equation substituting loop 1 current

$$
\begin{aligned}
& \left.35 I_{2}-30 I_{3}=15\right\} 175 I_{2}-150 I_{3}=75 \\
& -30 I_{2}+50 I_{3}=-4 \int-90 I_{2}+150 I_{3}=-12 \\
& I_{2}=\frac{63}{85} \mathrm{~A}=0.741 \mathrm{~A} \\
& I_{3}=\frac{35 I_{2}-15}{30}=0.365 \mathrm{~A}
\end{aligned}
$$

Problem 9: Obtain the Thévenin and Norton equivalent network representations as seen from the terminals a-b. (10pts.)

Problem 9 Solution

Thevenin source voltage is the voltage across

Problem 9: Obtain the Thévenin and Norton equivalent network representations as seen from the terminals a-b. (10pts.)

Problem 9 Solution cont'd

Norton source current is the current through across a-b terminals, when a-b is shorted.

$$
v_{x}=0
$$

KVL in the left loop: $\quad 20 i_{y}=10$

$$
i_{y}=0.5 \mathrm{~A}
$$

All the current from CCCS will flow through the short circuit $I_{\mathrm{ab}, s \mathrm{c}}=8 i_{y}=4 \mathrm{~A}$

$$
i_{\mathrm{No}}=4 \mathrm{~A}
$$

Problem 9: Obtain the Thévenin and Norton equivalent network representations as seen from the terminals a-b. (10pts.)

Problem 9 Solution cont'd

$$
\begin{gathered}
v_{\mathrm{Th}}=\frac{120}{73} \mathrm{~V} \\
i_{\mathrm{No}}=4 \mathrm{~A} \\
R_{\mathrm{No}}=R_{\mathrm{Th}}=\frac{v_{\mathrm{Th}}}{i_{\mathrm{No}}}=\frac{30}{73} \Omega
\end{gathered}
$$

Problem 10: Obtain the Thévenin and Norton equivalent network representations as seen from the terminals a-b. (10pts.)

Problem 10 Solution

The left-most resistances simplify as
$[(12 \Omega|\mid 24 \Omega)+4 \Omega]||4 \Omega=[8 \Omega+4 \Omega]|| 4 \Omega=$
$=12 \Omega \| 4 \Omega=3 \Omega$
The 12Ω 's on the right are also in parallel
The circuit is simplified as

Problem 10: Obtain the Thévenin and Norton equivalent network representations as seen from the terminals a-b. (10pts.)

Problem 10 Solution cont'd

Let us find the open circuit voltage across a-b KVL at left-most loop: $-3 i_{0}=9 \quad i_{0}=-3 \mathrm{~A}$
CCCS current: $4 i_{0}=-12 \mathrm{~A}$
The current flowing through the bottom 3Ω resistor is $I-4 i_{0}=I+12$

KVL in the looped marked by the green arrow: $-9+6 I+3(I+12)=0$

$$
9 I=-27
$$

$$
I=-3 \mathrm{~A}
$$

The open circuit voltage across $a-b$ is

$$
v_{\mathrm{Th}}=I \times 6 \Omega=-3 \mathrm{~A} \times 6 \Omega=-18 \mathrm{~V}
$$

Problem 10: Obtain the Thévenin and Norton equivalent network representations as seen from the terminals a-b. (10pts.)

Problem 10 Solution cont'd

Let us kill the independent source and find the equivalent resistance across a-b which provides us with the Thevenin resistance

When 9V source is killed, it is shorted. Then the voltage across the 3Ω resistor (vertical one) is zero, so $i_{0}=0$

The current flowing through CCCS is also zero so this branch is "open"

$$
R_{e q, a b}=6 \Omega \| 3 \Omega=2 \Omega
$$

Problem 10: Obtain the Thévenin and Norton equivalent network representations as seen from the terminals a-b. (10pts.)

Problem 10 Solution cont'd

a We found Thevenin equivalent

Norton equivalent follows as

