EECS/CSE 70A Spring 2017 Final Exam
June 13, 2017, 10:30 am to $12: 30 \mathrm{pm}$
Professor Peter Burke

Name: \qquad
ID no.: \qquad

Q1	Q2	Q3	Q4	Q5	Total
$/ 15$	$/ 20$	$/ 25$	$/ 20$	$/ 20$	$/ 100$

EECS / CSE 70A Final Exam

DO NOT BEGIN THE EXAM UNTIL YOU ARE TOLD TO DO SO.

Print your name on all pages.

Write your solutions in clear steps with concise explanations.

EECS/CSE 70A Spring 2017 Final Exam
June 13, 2017, 10:30 am to $12: 30 \mathrm{pm}$ Professor Peter Burke

Name: \qquad
ID no.: \qquad

PROBLEM 1: (15 points)

In the following circuit:
(a) Find equivalent Thevenin voltage source
(b)Find equivalent Norton Current source
(c) Find equivalent Thevenin and Norton Resistor and give the equivalent circuits.

V_{th}	3 V
I_{N}	2 A
R_{th}	1.5Ω

Super-position Theorem: (effect of two independent sources in a linear circuit is sum of effects of each source while the other one is zero).
(a) $\mathrm{V}_{\text {th } 1}=12 \mathrm{~V} \times \frac{3 \Omega}{1 \Omega+2 \Omega+3 \Omega}=6 \mathrm{~V} \quad \mathrm{~V}_{\text {th } 2}=-3 \mathrm{~A} \times \frac{2 \Omega}{1 \Omega+3 \Omega+2 \Omega} \times 3 \Omega=-3 \mathrm{~V}$

$$
\mathrm{V}_{\mathrm{th}}=\mathrm{V}_{\mathrm{th} 1}+\mathrm{V}_{\mathrm{th} 2}=3 \mathrm{~V}
$$

(b) $\mathrm{I}_{\mathrm{N} 1}=\frac{12 V}{1 \Omega+2 \Omega}=4 A \quad \mathrm{I}_{\mathrm{N} 2}=-3 A \times \frac{2 \Omega}{1 \Omega+2 \Omega}=-2 A$

$$
\mathrm{I}_{\mathrm{N}}=\mathrm{I}_{\mathrm{N} 1}+\mathrm{I}_{\mathrm{N} 2}=2 \mathrm{~A}
$$

(c) $R_{\text {th }}=\frac{V_{\text {th }}}{I_{N}}=\frac{3 V}{2 \mathrm{~A}}=1.5 \Omega$
$\mathrm{V}_{\text {th }}$ and I_{N} can be found directly without using superposition theorem.
Also $R_{t h}$ can be directly found by setting sources to zero and finding the equivalent resistance observed from a-b.

Thevenin

Norton

EECS/CSE 70A Spring 2017 Final Exam
June 13, 2017, 10:30 am to $12: 30 \mathrm{pm}$ Professor Peter Burke

Name: \qquad
ID no.: \qquad

PROBLEM 2: (20 points)

The switch in the circuit in the figure below was open for a long time and is closed at $t=0$.
(a) Find the expression of the $V_{C}(t)$ for $t>0$.
(b) Find the expression of the current of the capacitor, $\mathrm{i}_{\mathrm{C}}(\mathrm{t})$ for $\mathbf{t}>\boldsymbol{0}$.

(a) For $\mathrm{t}<0: \mathrm{V}_{\mathrm{C}}(\mathrm{t})=0 \mathrm{~V}$

For $\mathrm{t}>0$:
$\mathrm{V}_{\mathrm{C}}\left(\mathrm{t}=0^{+}\right)=\mathrm{V}_{\mathrm{C}}\left(\mathrm{t}=0^{-}\right)=0 \mathrm{~V}$
$\mathrm{V}_{\mathrm{C}}(\mathrm{t}=\infty)=\frac{10 \mathrm{k} \Omega}{1 k \Omega+5 k \Omega+10 k \Omega+2 k \Omega} \times 36 \mathrm{~V}=20 \mathrm{~V}$
$\mathrm{R} \times \mathrm{C}=\{10 K \Omega \|(1 K \Omega+5 K \Omega+2 K \Omega)\} \times 9 \mu \mathrm{~F}=\frac{40}{9} K \Omega \times 9 \mu \mathrm{~F}=40 \mathrm{~ms}$
$\mathrm{V}_{\mathrm{C}}(\mathrm{t}>0)=\mathrm{V}_{\mathrm{C}}(\mathrm{t}=\infty)+\left\{\mathrm{V}_{\mathrm{C}}\left(\mathrm{t}=0^{+}\right)-\mathrm{V}_{\mathrm{C}}(\mathrm{t}=\infty)\right\} e^{-\frac{\mathrm{t}}{\tau}}$
$\mathrm{V}_{\mathrm{C}}(\mathrm{t}>0)=20\left(1-e^{\left.-\frac{t}{40 \mathrm{~ms}}\right)} \mathrm{V}\right.$
(b) $i_{C}(t)=C \frac{d V_{C}(t)}{d t}=4.5 e^{-\frac{t}{40 m s}} \mathrm{~mA}$

EECS/CSE 70A Spring 2017 Final Exam
June 13, 2017, 10:30 am to $12: 30 \mathrm{pm}$
Professor Peter Burke

Name: \qquad
ID no.: \qquad

PROBLEM 3: (25 points)

Find $V_{1}(t)$ and $V_{2}(t)$ and V_{1} and $V_{2} \cdot\left(V_{1}\right.$ is phasor of $\left.V_{1}(t)\right)$. $\tan \left(8^{o}\right)=1 / 7$

$\boldsymbol{V}_{\mathbf{1}}(\boldsymbol{t})$	$\frac{5 \sqrt{2}}{3} \cos \left(t+8 \times \frac{\pi}{180}\right) V$
$\boldsymbol{V}_{\mathbf{2}}(\boldsymbol{t})$	$\frac{4 \sqrt{2}}{3} \cos \left(t+\frac{\pi}{4}\right) V$
$\boldsymbol{V}_{\mathbf{1}}$	$\frac{5 \sqrt{2}}{3} e^{j 8^{\circ}} V$
$\boldsymbol{V}_{\mathbf{2}}$	$\frac{4 \sqrt{2}}{3} e^{j 45^{\circ}} V$

Voltage Division:

$$
\begin{gathered}
V_{1}=V_{s} \times \frac{Z_{2} \|\left(Z_{3}+Z_{4}\right)}{Z_{2} \|\left(Z_{3}+Z_{4}\right)+Z_{1}}=4 \times \frac{\frac{1+\frac{4}{3} j}{2+\frac{4}{3} j}}{\frac{1+\frac{4}{3} j}{2+\frac{4}{3} j}+0.5} \\
=4 \times \frac{1+\frac{4}{3} j}{2+2 j}=\frac{1}{3} \times(7+j)=\frac{5 \sqrt{2}}{3} e^{j 8^{o}} \\
\rightarrow V_{1}(t)=\frac{5 \sqrt{2}}{3} \cos \left(t+8 \times \frac{\pi}{180}\right)
\end{gathered}
$$

Voltage Division 2:

$\boldsymbol{V}_{2}=\boldsymbol{V}_{1} \times \frac{Z_{4}}{Z_{3}+Z_{4}}=\mathbb{V}_{1} \times \frac{\frac{4}{3} j}{1+\frac{4}{3} j}$
So:

$$
\boldsymbol{V}_{2}=4 \times \frac{1+\frac{4}{3} j}{2+2 j} \times \frac{\frac{4}{3} j}{1+\frac{4}{3} j}=\frac{4}{3}(1+j)=\frac{4 \sqrt{2}}{3} e^{j 45^{\circ}} \rightarrow V_{2}(t)=\frac{4 \sqrt{2}}{3} \cos \left(t+\frac{\pi}{4}\right)
$$

Page 4 of 6 .

EECS/CSE 70A Spring 2017 Final Exam
June 13, 2017, 10:30 am to $12: 30 \mathrm{pm}$ Professor Peter Burke

Name: \qquad
ID no.: \qquad

PROBLEM 4: (20 points)
In the circuit below, the Transfer Function is defined as: $\quad H(\omega)=\frac{V_{o}(\omega)}{V_{s}(\omega)}$
a) Find the transfer function $H(\omega)$ in terms of R, R_{L}, L_{1} and L_{2}. b) Find $\lim _{\omega \rightarrow 0}|H(\omega)|$ and $\lim _{\omega \rightarrow \infty}|H(\omega)|$.

$\mathbf{H}(\boldsymbol{\omega})$	$\frac{L_{2} R_{L}}{\left(L_{1}+L_{2}\right) R_{L}+j \omega L_{1} L_{2}}$
$\lim _{\boldsymbol{\omega} \rightarrow \mathbf{0}}\|\boldsymbol{H}(\boldsymbol{\omega})\|$	$\frac{L_{2}}{\left(L_{1}+L_{2}\right)}$
$\lim _{\boldsymbol{\omega} \rightarrow \boldsymbol{\infty}}\|\boldsymbol{H}(\boldsymbol{\omega})\|$	0

(a) $H(\omega)=\frac{V_{o}(\omega)}{V_{S}(\omega)}=\frac{R_{L} \| j \omega L_{2}}{\left\{R_{L} \| j \omega L_{2}\right\}+j \omega L_{1}}=\frac{j \omega L_{2} R_{L}}{j \omega\left(L_{1}+L_{2}\right) R_{L}-\omega^{2} L_{1} L_{2}}=\frac{L_{2} R_{L}}{\left(L_{1}+L_{2}\right) R_{L}+j \omega L_{1} L_{2}}$
(b) $\lim _{\omega \rightarrow 0}|H(\omega)|=\lim _{\omega \rightarrow 0}\left|\frac{L_{2} R_{L}}{\left(L_{1}+L_{2}\right) R_{L}+j \omega L_{1} L_{2}}\right|=\frac{L_{2}}{\left(L_{1}+L_{2}\right)}$

$$
\lim _{\omega \rightarrow \infty}\left|\frac{L_{2} R_{L}}{\left(L_{1}+L_{2}\right) R_{L}+j \omega L_{1} L_{2}}\right|=0
$$

EECS/CSE 70A Spring 2017 Final Exam
June 13, 2017, 10:30 am to $12: 30 \mathrm{pm}$ Professor Peter Burke

Name: \qquad
ID no.: \qquad

LEM 5: (20 points)
The bode plots in the following represent the magnitude and phase for Transfer Function of an amplifier. If the input voltage is $V_{i n}(t)=\cos (t)+10 \sin (10 t)$, find the output voltage $V_{\text {out }}(t)$.

$$
\begin{aligned}
& V_{\text {in } 1}(t)=\cos t,(|H(\omega)|)_{\omega=1}=40 d b=10^{\frac{40}{20}}=100, \operatorname{Phase}(H(\omega))_{\omega=1} \\
& =-45^{o} \rightarrow V_{\text {out } 1}(t)=100 \cos \left(t-\frac{\pi}{4}\right) \\
& V_{\text {in } 2}(t)=10 \sin 10 t,(|H(\omega)|)_{\omega=10}=20 d b=10^{\frac{20}{20}}=10, \operatorname{Phase}(H(\omega))_{\omega=10} \\
& =-90^{\circ} \rightarrow V_{\text {out } 2}(t)=100 \sin \left(10 t-\frac{\pi}{2}\right)
\end{aligned} \begin{gathered}
V_{\text {in }}(t)=V_{\text {in } 1}(t)+V_{\text {in } 2}(t) \rightarrow V_{\text {out }}(t)=V_{\text {out } 1}(t)+V_{\text {out } 2}(t) \\
V_{\text {out }}(t)=100 \cos \left(t-\frac{\pi}{4}\right)+100 \sin \left(10 t-\frac{\pi}{2}\right)
\end{gathered}
$$

$\mathbf{V}_{\mathbf{o}}(\mathbf{t})$	$V_{\text {out }}(t)=100 \cos \left(t-\frac{\pi}{4}\right)+100 \sin \left(10 t-\frac{\pi}{2}\right)$

