\qquad
May $4^{\text {th }}, 2017,11: 00$ am to $12: 20 \mathrm{pm}$
ID no.: \qquad Professor Peter Burke

Q1	Q2	Q3	Q4	Q5	Total
$/ 20$	$/ 20$	$/ 20$	$/ 20$	$/ 20$	$/ 100$

EECS / CSE 70A Midterm Exam \#1 SOLUTION KEY

DO NOT BEGIN THE EXAM UNTIL YOU ARE TOLD TO DO SO.

Print your name on all pages.

Write your solutions in clear steps with concise explanations.
\qquad
May $4^{\text {th }}, 2017,11: 00$ am to $12: 20 \mathrm{pm}$
ID no.: \qquad Professor Peter Burke

PROBLEM 1: (20 points)

(a) Solve for the equivalent resistance, R_{eq}, across terminals a-b.

$$
\begin{aligned}
R_{e q} & =\left\{\left(\left[\left(\left[\left(\left[\left(\mathrm{R}_{1}+\mathrm{R}_{4}\right) \| \mathrm{R}_{2}\right]+\mathrm{R}_{3}\right) \| \mathrm{R}_{5}\right]+\mathrm{R}_{6}\right) \| \mathrm{R}_{7}\right]+\mathrm{R}_{8}\right) \| \mathrm{R}_{9}\right\}+\mathrm{R}_{10} \\
& =\{([([([(1 \Omega+2 \Omega) \| 6 \Omega]+10 \Omega) \| 6 \Omega]+2 \Omega) \| 6 \Omega]+9 \Omega) \| 4 \Omega\}+2 \Omega \\
& =\{([([(3 \Omega \| 6 \Omega]+10 \Omega) \| 6 \Omega]+2 \Omega) \| 6 \Omega]+9 \Omega) \| 4 \Omega\}+2 \Omega \\
& =\{([([(2 \Omega+10 \Omega) \| 6 \Omega]+2 \Omega) \| 6 \Omega]+9 \Omega) \| 4 \Omega\}+2 \Omega \\
& =\{([([12 \Omega \| 6 \Omega]+2 \Omega) \| 6 \Omega]+9 \Omega) \| 4 \Omega\}+2 \Omega \\
& =\{([(4 \Omega+2 \Omega) \| 6 \Omega]+9 \Omega) \| 4 \Omega\}+2 \Omega \\
& =\{(3 \Omega+9 \Omega) \| 4 \Omega\}+2 \Omega \\
& =5 \Omega
\end{aligned}
$$

(b) Solve for the equivalent resistance, R_{eq}, across terminals $\mathrm{a}-\mathrm{b}$.

\qquad
May $4^{\text {th }}, 2017,11: 00$ am to $12: 20 \mathrm{pm}$
ID no.: \qquad Professor Peter Burke

PROBLEM 2: (20 points)

Use nodal analysis, and solve for the node voltages and the current i_{0}.

V_{1}	4.5 V
$\mathrm{~V}_{2}$	1.5 V
$\mathrm{~V}_{3}$	6 V
i_{0}	0.375 A

Due to the VSCV, KCL in nodes 1 and 2 can not be written in terms of node voltages. We need to use a supernode:
KCL at supernode: $\frac{V_{1}-0 \mathrm{~V}}{R_{4}}+\frac{V_{1}-V_{3}}{R_{1}}+\frac{V_{2}-0 \mathrm{~V}}{R_{3}}+\frac{V_{2}-V_{3}}{R_{2}}=0$
Node 3 set by voltage source: $V_{3}=6 \mathrm{~V}$
Substitute (2) and (3) in (1):
$\frac{V_{1}-0 \mathrm{~V}}{12 \Omega}+\frac{V_{1}-6 \mathrm{~V}}{6 \Omega}+\frac{V_{2}-0 \mathrm{~V}}{6 \Omega}+\frac{V_{2}-6 \mathrm{~V}}{12 \Omega}=0 \rightarrow V_{1}+V_{2}=6$
Voltage source controlled by voltage: $V_{1}-V_{2}=2 v_{x}$, also $V_{2}=v_{x}$, as a result $V_{1}=3 V_{2}$
Substitute (4) in (3):
$4 V_{2}=6 \mathrm{~V}$, so $V_{2}=1.5 \mathrm{~V}$ and $V_{1}=4.5 \mathrm{~V}$
Also the current $i_{0}=\frac{V_{1}-0 \mathrm{~V}}{R_{4}}=\frac{4.5 \mathrm{~V}-0 \mathrm{~V}}{12 \Omega}=0.375 \mathrm{~A}$
\qquad
May $4^{\text {th }}, 2017,11: 00 \mathrm{am}$ to $12: 20 \mathrm{pm}$
ID no.: \qquad Professor Peter Burke

PROBLEM 3: (20 points)

Use mesh analysis, and solve for the mesh currents and the labeled voltages.

I_{A}	-0.67 A
I_{B}	2 A
I_{C}	3.3 A
i_{1}	-0.67 A
i_{2}	2.67 A
i_{3}	3.3 A
i_{4}	-1.3 A
$\mathrm{~V}_{1}$	0 V
$\mathrm{~V}_{2}$	-2.6 V
$\mathrm{~V}_{3}$	6.6 V

The current of mesh $\mathrm{B}, \mathrm{I}_{\mathrm{B}}$ set by the current source: $I_{B}=2 \mathrm{~A}$
Due to the 4 A current source, KVL in meshes A and C can not be written in terms of mesh currents. We need to use a supermesh:
$-6 \mathrm{~V}+R_{1} \cdot I_{A}+R_{4} \cdot I_{C}+R_{3} \cdot\left(I_{C}-I_{B}\right)+R_{2} \cdot\left(I_{A}-I_{B}\right)=0$
Substitute the resistors value and the I_{B} :
$-6 \mathrm{~V}+1 \Omega \cdot I_{A}+2 \Omega \cdot I_{C}+2 \Omega \cdot\left(I_{C}-2 \mathrm{~A}\right)+1 \Omega \cdot\left(I_{A}-2 \mathrm{~A}\right)=0$
So $2 I_{A}+4 I_{C}=12$
Also, based on the 4A current source: $I_{C}-I_{A}=4$ (2)
By solving (1) and (2), we reach: $I_{A}=\frac{-2}{3} \mathrm{~A}=-0.67 \mathrm{~A}$ and $I_{C}=\frac{10}{3} \mathrm{~A}=3.3 \mathrm{~A}$
Also $i_{1}=I_{A}=-0.67 \mathrm{~A}, \quad i_{2}=I_{B}-I_{A}=2.67 \mathrm{~A}$
Als, $i_{3}=I_{C}=3.3 \mathrm{~A}, \quad i_{4}=I_{B}-I_{C}=-1.3 \mathrm{~A}$
$V_{2}=R_{3} \cdot i_{4}=2 \Omega \cdot(-1.3 \mathrm{~A})=-2.6 \mathrm{~V}$
$V_{3}=R_{4} \cdot i_{3}=2 \Omega \cdot(3.3 \mathrm{~A})=6.6 \mathrm{~V}$
$V_{1}-V_{2}=R_{2} \cdot i_{2}=1 \Omega \cdot(2.67 \mathrm{~A}) \rightarrow V_{1}=0 \mathrm{~V}$
\qquad
May $4^{\text {th }}, 2017,11: 00$ am to $12: 20 \mathrm{pm}$
ID no.: \qquad Professor Peter Burke

PROBLEM 4: (20 points)

Find the absorbed or supplied power by each dependent source and indicate if it is source or sink.

KVL in the left mesh: $-\mathrm{V}_{1}-\mathrm{V}_{3}+V_{x}=0, \quad$ So $V_{x}-3 i_{b}=12$
KVL in the middle mesh: $-V_{x}+\mathrm{V}_{4}+R_{7} \cdot i_{b}=0, \quad$ So $\quad-V_{x}+15 i_{b}=0$
By solving (1) and (2), we reach $i_{b}=1 \mathrm{~A}$ and $V_{x}=15 \mathrm{~V}$
To find the powered absorbed/supplied by elements 3,4 and 5 , we need to calculate
$i_{3}, \mathrm{~V}_{3}, i_{4}, \mathrm{~V}_{4}, \mathrm{I}_{5}$ and V_{5}. To calculate the currents, we need to write the KCL at nodes A and B.
KCL at node $\mathrm{A}: i_{4}=i_{b}+\mathrm{I}_{5}=1 \mathrm{~A}+(4 \mathrm{~A} / \mathrm{V}) \cdot 15 \mathrm{~V}=61 \mathrm{~A}$
KCL at node $\mathrm{B}: i_{3}=\frac{V_{x}}{R_{6}}+i_{4}=\frac{15 \mathrm{~V}}{3 \Omega}+61 \mathrm{~A}=66 \mathrm{~A}$
To calculate V_{5}, we write the KVL in the right mesh: $\mathrm{V}_{5}-\mathrm{V}_{2}-R_{7} \cdot i_{b}=0$, so
$\mathrm{V}_{5}=12 \mathrm{~V}+10 \Omega \cdot 1 \mathrm{~A}=22 \mathrm{~V}$
Absorbed power by element $3: P_{3}=-i_{3} \cdot \mathrm{~V}_{3}=-66 \mathrm{~A} \cdot(3 \mathrm{~V} / \mathrm{A}) 1 \mathrm{~A}=-198 \mathrm{~W}$, so element 3 is power source.
Absorbed power by element 4: $P_{4}=i_{4} \cdot \mathrm{~V}_{4}=61 \mathrm{~A} \cdot(5 \mathrm{~V} / \mathrm{A}) 1 \mathrm{~A}=305 \mathrm{~W}$, so element 4 is power sink.
Absorbed power by element 5: $P_{5}=\mathrm{I}_{5} \cdot \mathrm{~V}_{5}=(4 \mathrm{~A} / \mathrm{V}) 15 \mathrm{~V} \cdot 22 \mathrm{~V}=1320 \mathrm{~W}$, so element 5 is power sink.

element	Power	Type (sink/source)
3	-198 W	source
4	305 W	sink
5	1320 W	sink

\qquad
May $4^{\text {th }}, 2017,11: 00 \mathrm{am}$ to $12: 20 \mathrm{pm}$
ID no.: \qquad Professor Peter Burke

PROBLEM 5: (20 points)

Obtain the Thévenin and Norton equivalent network representations as seen from the terminals ab. (Please draw the equivalent network representations and annotate the source voltages or currents and resistances)

$\mathrm{v}_{\text {Th }}$	1.29 V
R_{Th}	0.98Ω
i_{No}	1.3 A
R_{No}	0.98Ω

One needs to solve two of the following, since the third can be found by the previous two parameters: $\mathrm{v}_{\mathrm{Th}}, \mathrm{i}_{\mathrm{No}}, \mathrm{R}_{\mathrm{Th}}=\mathrm{R}_{\mathrm{No}}$ where $\mathrm{v}_{\mathrm{Th}}=\mathrm{i}_{\mathrm{No}} \mathrm{R}_{\mathrm{Th}}$
Open-circuit voltage at a-b terminals:
let us write KCL at the node "a" in terms of V_{x}

$$
\begin{aligned}
& \frac{V_{\text {o.c. }}-V_{x}}{R_{2}}+\frac{V_{\text {o.c. }}-V_{1}}{R_{4}}+\frac{V_{\text {o.c. }}-V_{2}}{R_{5}}=0 \\
& \text { So } \frac{V_{\text {o.c. }}-V_{x}}{3 \Omega}+\frac{V_{\text {o.c. }}-1 \mathrm{~V}}{2 \Omega}+\frac{V_{\text {o.c. }}-2 \mathrm{~V}}{4 \Omega}=0
\end{aligned}
$$

As a result the first equation would be:
$13 V_{\text {o.c. }}-4 V_{x}=12$
Also, KCL at the top node:

$$
\frac{V_{x}-V_{\text {o.c. }}}{R_{2}}+\frac{V_{x}-V_{1}}{R_{1}}+\frac{V_{x}-V_{2}}{R_{3}}=0
$$

So $\frac{V_{x}-V_{\text {o.c. }}}{3 \Omega}+\frac{V_{x}-1 \mathrm{~V}}{1 \Omega}+\frac{V_{x}-2 \mathrm{~V}}{5 \Omega}=0$, as a result the second equation would be:
$-5 V_{\text {o.c. }}+23 V_{x}=21$
By solving (1) and (2), we reach $\mathrm{V}_{\mathrm{x}}=1.193 \mathrm{~V}$ and $\mathrm{V}_{\text {o.c. }}=1.29 \mathrm{~V}$. So $\mathrm{V}_{\mathrm{Th}}=\mathrm{V}_{\text {o.c. }}=1.29 \mathrm{~V}$
To calculate the R_{Th}, we kill the independent voltage sources and find the equivalent resistance from a-b terminal:

EECS/CSE 70A Spring 2017 Midterm Exam \#1 Name:
May ${ }^{\text {th }}, 2017,11: 00$ am to $12: 20 \mathrm{pm}$
ID no.: \qquad Professor Peter Burke

$$
\begin{aligned}
\mathrm{R}_{\mathrm{Th}}=\mathrm{R}_{\mathrm{eq}} & =\left[\left(\mathrm{R}_{1} \mid \| \mathrm{R}_{3}\right)+\mathrm{R}_{2}\right] \|\left(\mathrm{R}_{4} \| \mathrm{R}_{5}\right) \\
& =[(1 \Omega \| 5 \Omega)+3 \Omega] \|(2 \Omega \| 4 \Omega) \\
& =\left[\frac{5}{6} \Omega+3 \Omega\right] \|\left(\frac{8}{6} \Omega\right)=\frac{92}{93} \Omega=0.98 \Omega
\end{aligned}
$$

Finally we have:

b

