EECS/CSE 70A Spring 2017 Midterm Exam #1 Name:

May 4th, 2017, 11:00 am to 12:20 pm ID no.:_____ Professor Peter Burke

Q1	Q2	Q3	Q4	Q5	Total
/20	/20	/20	/20	/20	/100

EECS / CSE 70A Midterm Exam #1 **SOLUTION KEY**

DO NOT BEGIN THE EXAM UNTIL YOU ARE TOLD TO DO SO.

Print your name on all pages.

Write your solutions in clear steps with concise explanations.

EECS/CSE 70A Spring 2017 Midterm Exam #1 Name:_____

May 4th, 2017, 11:00 am to 12:20 pm Professor Peter Burke

ID no.:____

PROBLEM 1: (20 points)

(a) Solve for the equivalent resistance, R_{eq} , across terminals a-b.

R _{eq}	5Ω

$$\begin{aligned} R_{eq} &= \{ ([(([((R_1 + R_4) || R_2] + R_3) || R_5] + R_6) || R_7] + R_8) || R_9 \} + R_{10} \\ &= \{ ([(([((([(1 \Omega + 2 \Omega) || 6 \Omega] + 10 \Omega) || 6 \Omega] + 2 \Omega) || 6 \Omega] + 9 \Omega) || 4 \Omega \} + 2 \Omega \\ &= \{ ([(([([3 \Omega || 6 \Omega] + 10 \Omega) || 6 \Omega] + 2 \Omega) || 6 \Omega] + 9 \Omega) || 4 \Omega \} + 2 \Omega \\ &= \{ ([(([(2 \Omega + 10 \Omega) || 6 \Omega] + 2 \Omega) || 6 \Omega] + 9 \Omega) || 4 \Omega \} + 2 \Omega \\ &= \{ ([(([1 2 \Omega || 6 \Omega] + 2 \Omega) || 6 \Omega] + 9 \Omega) || 4 \Omega \} + 2 \Omega \\ &= \{ ([(([4 \Omega + 2 \Omega) || 6 \Omega] + 9 \Omega) || 4 \Omega \} + 2 \Omega \\ &= \{ ([3 \Omega + 9 \Omega) || 4 \Omega \} + 2 \Omega \\ &= 5 \Omega \end{aligned}$$

(b) Solve for the equivalent resistance, R_{eq}, across terminals a-b.

|--|

 $\mathbf{R}_{eq} = \{ [(\mathbf{R}_2 \| \mathbf{R}_3) + \mathbf{R}_1] \| (\mathbf{R}_5 \| \mathbf{R}_6) \}$

$$= \{ [(20\Omega \parallel 30\Omega) + 4\Omega] \parallel (40\Omega \parallel 60\Omega) \}$$

- $= \{ [12\Omega + 4\Omega] \parallel 24\Omega \}$
- $=16\Omega \parallel 24\Omega$

EECS/CSE 70A Spring 2017 Midterm Exam #1	Name:
--	-------

May 4th, 2017, 11:00 am to 12:20 pm Professor Peter Burke

ID no.:_____

PROBLEM 2: (20 points)

Use nodal analysis, and solve for the node voltages and the current i₀.

\mathbf{V}_1	4.5V
V_2	1.5V
V_3	6V
i ₀	0.375A

Due to the VSCV, KCL in nodes 1 and 2 can not be written in terms of node voltages. We need to use a supernode:

KCL at supernode: $\frac{V_1 - 0V}{R_4} + \frac{V_1 - V_3}{R_1} + \frac{V_2 - 0V}{R_3} + \frac{V_2 - V_3}{R_2} = 0 \quad (1)$ Node 3 set by voltage source: $V_3 = 6V$ (2)

Substitute (2) and (3) in (1):

$$\frac{V_1 - 0V}{12\Omega} + \frac{V_1 - 6V}{6\Omega} + \frac{V_2 - 0V}{6\Omega} + \frac{V_2 - 6V}{12\Omega} = 0 \longrightarrow V_1 + V_2 = 6 \quad (3)$$

Voltage source controlled by voltage: $V_1 - V_2 = 2v_x$, also $V_2 = v_x$, as a result $V_1 = 3V_2$ (4) Substitute (4) in (3):

 $4V_2 = 6$ V, so $V_2 = 1.5$ V and $V_1 = 4.5$ V

Also the current $i_0 = \frac{V_1 - 0V}{R_4} = \frac{4.5V - 0V}{12\Omega} = 0.375 \text{ A}$

EECS/CSE 70A Spring 2017 Midterm Exam #1 Name:_____

May 4th, 2017, 11:00 am to 12:20 pm Professor Peter Burke

ID no.:_____

PROBLEM 3: (20 points)

Use mesh analysis, and solve for the mesh currents and the labeled voltages.

IA	-0.67 A
IB	2 A
I _C	3.3 A
\mathbf{i}_1	-0.67 A
i ₂	2.67 A
i ₃	3.3 A
i4	-1.3 A
V_1	0 V
V_2	-2.6 V
V ₃	6.6 V

The current of mesh B, I_B set by the current source: $I_B = 2 \text{ A}$ Due to the 4A current source, KVL in meshes A and C can not be written in terms of mesh currents. We need to use a supermesh:

 $\begin{aligned} -6\,\mathrm{V} + R_1 \cdot I_A + R_4 \cdot I_C + R_3 \cdot (I_C - I_B) + R_2 \cdot (I_A - I_B) &= 0\\ \text{Substitute the resistors value and the I}_{\mathrm{B}} : \\ -6\,\mathrm{V} + 1\Omega \cdot I_A + 2\Omega \cdot I_C + 2\Omega \cdot (I_C - 2\mathrm{A}) + 1\Omega \cdot (I_A - 2\mathrm{A}) &= 0\\ \text{So } 2I_A + 4I_C &= 12 \quad (1)\\ \text{Also, based on the 4A current source: } I_C - I_A &= 4 \quad (2)\\ \text{By solving (1) and (2), we reach: } I_A &= \frac{-2}{3}\mathrm{A} &= -0.67\,\mathrm{A} \text{ and } I_C &= \frac{10}{3}\mathrm{A} &= 3.3\,\mathrm{A}\\ \text{Also, } &i_1 &= I_A &= -0.67\,\mathrm{A}, \quad i_2 &= I_B - I_A &= 2.67\,\mathrm{A}\\ i_3 &= I_C &= 3.3\,\mathrm{A}, \quad i_4 &= I_B - I_C &= -1.3\,\mathrm{A}\\ V_2 &= R_3 \cdot i_4 &= 2\Omega \cdot (-1.3\,\mathrm{A}) &= -2.6\,\mathrm{V}\\ V_3 &= R_4 \cdot i_3 &= 2\Omega \cdot (3.3\,\mathrm{A}) &= 6.6\,\mathrm{V}\\ V_1 - V_2 &= R_2 \cdot i_2 &= 1\Omega \cdot (2.67\,\mathrm{A}) \rightarrow V_1 &= 0\,\mathrm{V} \end{aligned}$

EECS/CSE 70A Spring 2017 Midterm Exam #1 Name:_____

May 4th, 2017, 11:00 am to 12:20 pm Professor Peter Burke

ID no.:_____

PROBLEM 4: (20 points)

Find the absorbed or supplied power by each dependent source and indicate if it is source or sink.

KVL in the left mesh: $-V_1 - V_3 + V_x = 0$, So $V_x - 3i_b = 12$ (1) KVL in the middle mesh: $-V_x + V_4 + R_7 \cdot i_b = 0$, So $-V_x + 15i_b = 0$ (2) By solving (1) and (2), we reach $i_b = 1$ A and $V_x = 15$ V To find the powered absorbed/supplied by elements 3, 4 and 5, we need to calculate

 i_3 , V_3 , i_4 , V_4 , I_5 and V_5 . To calculate the currents, we need to write the KCL at nodes A and B. KCL at node A: $i_4 = i_b + I_5 = 1A + (4A/V) \cdot 15V = 61A$

KCL at node B:
$$i_3 = \frac{V_x}{R_6} + i_4 = \frac{15 \text{ V}}{3\Omega} + 61 \text{ A} = 66 \text{ A}$$

To calculate V_5 , we write the KVL in the right mesh: $V_5 - V_2 - R_7 \cdot i_b = 0$, so

$$V_5 = 12 V + 10 \Omega \cdot 1A = 22 V$$

Absorbed power by element 3: $P_3 = -i_3 \cdot V_3 = -66 A \cdot (3 V/A) 1 A = -198 W$, so element 3 is power source.

Absorbed power by element 4: $P_4 = i_4 \cdot V_4 = 61 \text{A} \cdot (5 \text{V}/\text{A})1 \text{A} = 305 \text{W}$, so element 4 is power sink.

Absorbed power by element 5: $P_5 = I_5 \cdot V_5 = (4 \text{ A/V})15 \text{ V} \cdot 22 \text{ V} = 1320 \text{ W}$, so element 5 is power sink.

element	Power	Type (sink/source)
3	-198W	source
4	305W	sink
5	1320W	sink

EECS/CSE 70A Spring 2017 Midterm Exam #1 Name:____

May 4th, 2017, 11:00 am to 12:20 pm Professor Peter Burke

ID no.:_____

PROBLEM 5: (20 points)

Obtain the Thévenin and Norton equivalent network representations as seen from the terminals ab. (Please draw the equivalent network representations and annotate the source voltages or currents and resistances)

VTh	1.29 V
R_{Th}	0.98Ω
i _{No}	1.3A
R _{No}	0.98Ω

One needs to solve two of the following, since the third can be found by the previous two parameters: v_{Th} , i_{No} , $R_{Th}=R_{No}$ where $v_{Th} = i_{No}R_{Th}$ Open-circuit voltage at a-b terminals:

By solving (1) and (2), we reach $V_x=1.193V$ and $V_{o.c.}=1.29$ V. So $v_{Th} = V_{o.c.}=1.29$ V To calculate the R_{Th} , we kill the independent voltage sources and find the equivalent resistance from a-b terminal:

May 4th, 2017, 11:00 am to 12:20 pm Professor Peter Burke

ID no.:____

$$\begin{aligned} \mathbf{R}_{\text{Th}} &= \mathbf{R}_{\text{eq}} = [(\mathbf{R}_1 || \mathbf{R}_3) + \mathbf{R}_2] ||(\mathbf{R}_4 || \mathbf{R}_5) \\ &= [(1\Omega || 5\Omega) + 3\Omega] ||(2\Omega || 4\Omega) \\ &= [\frac{5}{6}\Omega + 3\Omega] ||\left(\frac{8}{6}\Omega\right) = \frac{92}{93}\Omega = 0.98\Omega \end{aligned}$$

$$R_{No} = R_{Th} = \frac{92}{93}\Omega = 0.98\Omega$$

 $i_{No} = v_{Th}/R_{Th} = 1.3A$

Finally we have:

