EECS / CSE 70A MIDTERM #1

GRADING RUBRIC

Problem 1.

a.	
Step	Points
Recognizing series combination $R_1+R_4 = 3 \Omega$	1
Recognizing parallel combination $3\Omega \parallel R_2 = 2 \Omega$	1
Recognizing series combination R ₃ +2 Ω = 12 Ω	1
Recognizing parallel combination $12\Omega \parallel R_5 = 4 \Omega$	1
Recognizing series combination $R_6+4 \Omega = 6 \Omega$	1
Recognizing parallel combination $6\Omega \parallel R_7 = 3 \Omega$	1
Recognizing series combination $3\Omega + R_8 = 12\Omega$	1
Recognizing parallel combination $12\Omega \parallel R_9=3\Omega$	1
Recognizing series combination $3\Omega + R_{10} = 5\Omega$	1
Final answer = 5Ω	1
Total	10

b.

Step	Points
Recognizing parallel combinations R ₂ R ₃	2
Application of the parallel resistors formula in step 1 $(20\Omega 30\Omega) = 12\Omega$	1
Recognizing series combination of $R_1+12\Omega = 16\Omega$	1
Recognizing parallel combination of R ₅ R ₆	2
Application of the parallel resistors formula in step 3 $(40\Omega 60\Omega) = 24\Omega$	1
Recognizing parallel combination of $16\Omega 24\Omega$	2
Final answer = 9.6Ω	1
Total	10

Problem 2.

Step	Points
Recognizing using supernode for Node 1 and Node 2	2
Recognizing that Node 3 voltage is set by the voltage source	1
Writing the expressions for KCL at supernode $(V_1+V_2 = 6)$	4
Writing the expression for dependent voltage source	2
Writing the expression for V_2 versus V_x	1
Finding the second equation for V_1 and V_2	2
Writing the expression for i0	2
Final Answers (Should be filled in the table)	
$V_1 = 4.5V$	2
$V_2 = 1.5V$	2
$V_3 = 6V$	1
i ₀ = 0.375A	1
Total	20

Problem 3.

Step	Points
Recognizing the current IB is set by the current source	1
Recognizing using supermesh for A&C	1
KVL Loop equation for Supermesh	4
Writing the expression for IA and IC based on current source	2
Final Answers	
$I_{A} = -2/3 A$	2
I _B = 2 A	1
Ic = 10/3A	2
i1=IA= -2/3A	1
$i_2 = I_B - I_A = 8/3A$	1
i ₃ = Ic=10/3A	1
$i_4 = I_B - I_C = -4/3A$	1
$V_1 = V_2 + R_2 i_2 = 0 V$	1
$V_2 = R_3 i_4 = -2.6 V$	1
$V_3 = R_4 i_3 = 6.6 V$	1
Total	20

Problem 4. Method 1:

Step	Points
Writing the KVL in the left mesh	2
Writing the KVL in the middle mesh	2
Finding the values of i_b and V_x	2
Calculating i4 by writing the KCL at node A	2
Calculating i ₃ by writing the KCL at node B	2
Calculating V ₅ by writing the KVL in the right mesh	1
Finding the value of P ₃ & the type	2&1
Finding the value of P4 & the type	2&1
Finding the value of P ₅ & the type	2&1
Tot	al 20

OR

Method 2:

Step	Points
Writing the KVL in the left mesh	2
Writing the KVL in the middle mesh	2
Finding the values of ib and Vx	2
Calculating the current of the left mesh	2
Calculating the current of the middle mesh	2
Calculating V ₅ by writing the KVL in the right mesh	1
Finding the value of P ₃ & the type	2&1
Finding the value of P ₄ & the type	2&1
Finding the value of P ₅ & the type	2&1
Total	20

Problem 5.

Step	Points
Solving the open circuit voltage for Thevenin voltage source	-
Writing the KCL at node a	2
Writing the KCL at the top node	2
Finding the Values of V_{oc} and V_x	4
Finding the R _{th}	-
Recognizing parallel combination of R ₁ R ₃ =5/6Ω	1
Recognizing series combination of $R_2+5/6\Omega=23/6\Omega$	1
Recognizing the parallel combination of $R_4 R_5 = 8/6\Omega$	1
Recognizing the parallel combination of $8/6\Omega 23/6\Omega=92/93\Omega $	1
Finding the I _{No}	2
Finding the R _{No}	2
Drawing the correct Thevenin equivalent network	2
Drawing the correct Norton equivalent network	2
Total	20