EECS / CSE 70A MIDTERM \#1

GRADING RUBRIC

Problem 1.

a.

Step	Points	
Recognizing series combination $R_{1}+R_{4}=3 \Omega$	1	
Recognizing parallel combination $3 \Omega \\| R_{2}=2 \Omega$	1	
Recognizing series combination $R_{3}+2 \Omega=12 \Omega$	1	
Recognizing parallel combination $12 \Omega \\| R_{5}=4 \Omega$	1	
Recognizing series combination $R_{6}+4 \Omega=6 \Omega$	1	
Recognizing parallel combination $6 \Omega \\| R_{7}=3 \Omega$	1	
Recognizing series combination $3 \Omega+\mathrm{R}_{8}=12 \Omega$	1	
Recognizing parallel combination $12 \Omega \\| R_{9}=3 \Omega$	1	
Recognizing series combination $3 \Omega+\mathrm{R}_{10}=5 \Omega$	1	
Final answer $=5 \Omega$	1	
	$\mathbf{1 0}$	

b.

Step	Points	
Recognizing parallel combinations $R_{2} \\| R_{3}$	2	
$\left.\begin{array}{l}\text { Application of the parallel resistors formula in step } 1 \\ (20 \Omega \\|\end{array} \\| 30 \Omega\right)=12 \Omega$		$)$

Problem 2.

Step	Points		
Recognizing using supernode for Node 1 and Node 2	2		
Recognizing that Node 3 voltage is set by the voltage source	1		
Writing the expressions for KCL at supernode $\left(\mathrm{V}_{1}+\mathrm{V}_{2}=6\right)$	4		
Writing the expression for dependent voltage source	2		
Writing the expression for V_{2} versus V_{x}	1		
Finding the second equation for V_{1} and V_{2}	2		
Writing the expression for i0	2		
Final Answers (Should be filled in the table)			
$\mathrm{V}_{1}=4.5 \mathrm{~V}$	2		
$\mathrm{~V}_{2}=1.5 \mathrm{~V}$	2		
$\mathrm{~V}_{3}=6 \mathrm{~V}$	1		
$\mathrm{i}_{0}=0.375 \mathrm{~A}$	1		
Total			$\mathbf{2 0}$

Problem 3.

Step	Points
Recognizing the current IB is set by the current source	1
Recognizing using supermesh for $\mathrm{A} \& \mathrm{C}$	1
KVL Loop equation for Supermesh	4
Writing the expression for IA and IC based on current source	2
Final Answers	
$\mathrm{I}_{\mathrm{A}}=-2 / 3 \mathrm{~A}$	2
$\mathrm{I}_{\mathrm{B}}=2 \mathrm{~A}$	1
$\mathrm{I}_{\mathrm{C}}=10 / 3 \mathrm{~A}$	2
$\mathrm{I}_{1}=\mathrm{I}_{\mathrm{A}}=-2 / 3 \mathrm{~A}$	1
$\mathrm{I}_{2}=\mathrm{I}_{\mathrm{B}}-\mathrm{I}_{\mathrm{A}}=8 / 3 \mathrm{~A}$	1
$\mathrm{I}_{3}=\mathrm{I}_{\mathrm{C}}=10 / 3 \mathrm{~A}$	1
$\mathrm{I}_{4}=\mathrm{I}_{\mathrm{B}}-\mathrm{I}_{\mathrm{C}}=-4 / 3 \mathrm{~A}$	1
$\mathrm{~V}_{1}=\mathrm{V}_{2}+\mathrm{R}_{2} \mathrm{i}_{2}=0 \mathrm{~V}$	1
$\mathrm{~V}_{2}=\mathrm{R}_{3} \mathrm{i}_{4}=-2.6 \mathrm{~V}$	1
$\mathrm{~V}_{3}=\mathrm{R}_{4} \mathrm{i}_{3}=6.6 \mathrm{~V}$	1
	1

Problem 4.

Method 1:

Step	Points			
Writing the KVL in the left mesh	2			
Writing the KVL in the middle mesh	2			
Finding the values of i_{b} and V_{x}	2			
Calculating i_{4} by writing the KCL at node A	2			
Calculating is by writing the KCL at node B	2			
Calculating V_{5} by writing the KVL in the right mesh	1			
Finding the value of $\mathrm{P}_{3} \&$ the type	$2 \& 1$			
Finding the value of $\mathrm{P}_{4} \&$ the type	$2 \& 1$			
Finding the value of $\mathrm{P}_{5} \&$ the type	$2 \& 1$			
Total				$\mathbf{2 0}$

OR
Method 2:

Step	Points
Writing the KVL in the left mesh	2
Writing the KVL in the middle mesh	2
Finding the values of i_{b} and V_{x}	2
Calculating the current of the left mesh	2
Calculating the current of the middle mesh	2
Calculating V_{5} by writing the KVL in the right mesh	1
Finding the value of $\mathrm{P}_{3} \&$ the type	$2 \& 1$
Finding the value of $\mathrm{P}_{4} \&$ the type	$2 \& 1$
Finding the value of $\mathrm{P}_{5} \&$ the type	$2 \& 1$
	$\mathbf{2 0}$

Problem 5.

Step	Points	
Solving the open circuit voltage for Thevenin voltage source	-	
Writing the KCL at node a	2	
Writing the KCL at the top node	2	
Finding the Values of $\mathrm{V}_{\text {oc }}$ and V_{x}	4	
Finding the Rth	-	
Recognizing parallel combination of $\mathrm{R}_{1}\| \| \mathrm{R}_{3}=5 / 6 \Omega$	1	
Recognizing series combination of $\mathrm{R}_{2}+5 / 6 \Omega=23 / 6 \Omega$	1	
Recognizing the parallel combination of $\mathrm{R}_{4} \\| \mathrm{R}_{5}=8 / 6 \Omega$	1	
Recognizing the parallel combination of $8 / 6 \Omega \\| 23 / 6 \Omega=92 / 93 \Omega$	1	
Finding the I_{No}	2	
Finding the R_{N}	2	
Drawing the correct Thevenin equivalent network	2	
Drawing the correct Norton equivalent network	2	
Total	20	

