EECS / CSE 70A MIDTERM \#2

GRADING RUBRIC

Each incorrect or missing units or incorrect result causes loosing 1 point.

Problem 1.

Step	Points			
Recognize virtual ground in the opamp inputs $\left(\mathrm{V}_{+}=\mathrm{V}_{\mathrm{L}}\right.$) due to opamp infinite gain and correct voltage at both opamp pins	4			
Recognizing the opamp ports do not draw any current (infinite $\left.\mathrm{R}_{\text {in }}\right)$	2			
Write KCL at the opamp negative input pin	2			
Finding I_{1} (formula (1 point) and result (2 points))	3			
Finding I_{2} (formula (1 point) and result (2 points))	3			
Finding I_{3} (formula (1 point) and result (2 points))	3			
$\mathrm{KVL}^{\text {to find the output voltage }}$	1			
Find output voltage	2			
Total				$\mathbf{2 0}$

Problem 2.

Step	Points
Recognize that the capacitor is open circuit at $\mathrm{t}=0^{-}$	2
Find $\mathrm{V}_{\mathrm{C}}\left(\mathrm{t}=0^{-}\right)$(using KVL/KCL) and final result	4
Find $\mathrm{i}\left(\mathrm{t}=\mathrm{O}^{-}\right)$(using $\left.\mathrm{KVL/KCL}\right)$ and final result	4
Recognize that $3 \mathrm{k} \Omega$ and source voltage are open circuited at $\mathrm{t}=0^{+}$	2
After switch is open, recognizing correct equivalent resistance	3
Finding the correct time constant value (formula and final result)	3
Recognize source free discharge or why $\mathrm{V}_{\mathrm{C}}(\infty)=0$ and $\mathrm{i}(\mathrm{t}=\infty)=0$	$2+2$
Give the generic formula for $\mathrm{V}_{\mathrm{C}}(\mathrm{t})$ and $\mathrm{i}(\mathrm{t})$ when $\mathrm{t}>0$	$2+2$
Correct results for $\mathrm{V}_{\mathrm{C}}(\mathrm{t})$ and $\mathrm{i}(\mathrm{t})$	$2+2$
Total	$\mathbf{3 0}$

Problem 3.

Step	Points
Recognize that the inductor is short circuit at $\mathrm{t}=0^{-}$	2
Find $\mathrm{i}_{2}\left(\mathrm{t}=0^{-}\right)$(using KVL/KCL) and final result	3
Find $\mathrm{i}_{\mathrm{L}}\left(\mathrm{t}=0^{-}\right)$(using KVL/KCL) and final result	3
Recognize that 6Ω and source voltage are open circuited at $\mathrm{t}=0^{+}$	2
For transient period, writing the correct time constant equation	2
After switch is open, recognizing correct equivalent resistance	3
Finding the correct time constant value (formula and final result)	3
Recognize source free discharge or why $\mathrm{i}_{\mathrm{L}}(\infty)=0$ and $\mathrm{i}_{2}(\mathrm{t}=\infty)=0$	$2+2$
Give the generic formula for $\mathrm{i}_{\mathrm{L}}(\mathrm{t})$ and $\mathrm{i}_{2}(\mathrm{t})$ when $\mathrm{t}>0$	$2+2$
Write KCL to find $\mathrm{i}_{2}(\mathrm{t})$ relationship with $\mathrm{i}_{L}(\mathrm{t})$	2
Correct results for $\mathrm{V}_{C}(\mathrm{t})$ and $\mathrm{i}(\mathrm{t})$	2
Total	$\mathbf{3 0}$

Problem 4.

Step	Points
Recognize virtual ground in the opamp inputs $\left(\mathrm{V}_{+}=\mathrm{V}^{\prime}\right.$) due to infinite opamp gain and correct voltage at both opamp pins	4
Recognizing the opamp ports do not draw any current	2
Finding is(t) (ohms law at the opamp (1 point) input and final result (2 points))	3
Write KCL at the opamp negative input pin	1
Finding the current passing through the capacitor	2
Writing the differential equation for voltage and current of the capacitor	3
Integrating the differential equation to find the final result at $\mathrm{t}=2$	3
Final capacitor voltage value	2
Total	20

