May 25th, 2017, 11:00 am to 12:10 pm Professor Peter Burke ID no.:_____

Q1	Q2	Q3	Q4	Total
/20	/30	/30	/20	/100

EECS / CSE 70A Midterm Exam #2 SOLUTION KEY

DO NOT BEGIN THE EXAM UNTIL YOU ARE TOLD TO DO SO.

Print your name on all pages.

Write your solutions in clear steps with concise explanations.

May 25th, 2017, 11:00 am to 12:10 pm Professor Peter Burke

PROBLEM 1: (20 points)

Assuming ideal op-amp:

- (a) Calculate currents I_1 , I_2 and I_3 . (b) Find the output voltage v_0
- $V_{1} = 2V$ $I_{3} = ?$ $V_{2} = 5V$ $I_{2} = ?$ $V_{2} = 5V$ $I_{2} = ?$ $I_{2} = ?$ $I_{2} = ?$ $I_{2} = ?$ $I_{3} = -1.5mA$ $I_{3} = -1.5mA$ $V_{0} = 3V$

SOLUTION:

Opamp is ideal so voltage at its positive and negative inputs are equal: $V_+ = V_-$ = 2V and there is no current flowing in to the opamp input pins.

$$I_3 = \frac{V_- - V_2}{2k\Omega} = -1.5mA$$
$$I_2 = \frac{V_-}{1k\Omega} = 2mA$$

KCL at V₋ : $I_1 = I_2 + I_3 = 0.5$ mA

KVL: $vo = V_{-} + 2k\Omega * I_{1} = 2 + 1 = 3V$

EECS/CSE 70A Spring 2017 Midterm Exam #2Name:May 25th, 2017, 11:00 am to 12:10 pmID no.:Professor Peter BurkeID no.:

PROBLEM 2: (30 points)

The switch in the circuit in the figure below has been closed for a long time (from $t = -\infty$ till t = 0) and is opened at t = 0.

(a) Find the voltage across the capacitor, $v_{\rm C}(t)$ for t > 0.

(b) Find the current passing through the $1k\Omega$ resistor for t > 0.

SOLUTION:

Capacitor is open-circuit at DC, which is the state the circuit is in for t < 0 and t = ∞ .

For t < 0: $v_C(t) = \frac{5k\Omega + 1k\Omega}{5k\Omega + 1k\Omega + 3k\Omega} \times 12V = 8V$ and $i(t) = \frac{12V}{5k\Omega + 1k\Omega + 3k\Omega} = 1.33mA$

For $t = \infty$: notice the switch is open so the voltage source and $3k\Omega$ resistors are out of the circuit. Capacitor is also open-circuit so no current passes through it $\rightarrow v_c(t = \infty) = 0$ and $i(t = \infty) = 0$.

After the switch opens, capacitor sees $1k\Omega$ and $5k\Omega$ series resistances \rightarrow circuit time constant = T = RC = $6k\Omega \times 10$ uF = 6×10^{-2} s

Solving for first order differential equation, we know for
$$t > 0$$
:
 $v_C(t) = v_C(t=\infty) + [v_C(t=0^+) - v_C(t=\infty)] e^{\frac{-t}{T}}$ and $i(t) = i(t=\infty) + [i(t=0^+) - i(t=\infty)] e^{\frac{-t}{T}}$
 $\Rightarrow v_C(t) = 8e^{\frac{-t}{0.06}} (V)$ and $i(t) = 1.33e^{\frac{-t}{0.06}} (mA)$

May 25th, 2017, 11:00 am to 12:10 pm Professor Peter Burke

ID no.:

PROBLEM 3: (30 points)

The switch in the circuit in the figure below was closed for a long time and is opened at t = 0.

(a) Find the expression of the $i_L(t)$ for t > 0.

(b) Find the expression of the current passing R_2 , $i_2(t)$ for t > 0.

$$R_{1}=6\Omega$$

$$R_{2}=6\Omega \leq L=2H \langle i_{L}(t)=? \rangle 24V$$

$$i_{2}(t)=? \langle i_{2}(t)=? \rangle$$

$$i_{2}(t)=2H \langle i_{2}(t)=? \rangle 24V$$

$$i_{2}(t)=24V$$

$$i_{2}(t)=24V$$

$$i_{2}(t)=24V$$

$$i_{2}(t)=24V$$

SOLUTION:

inductor is short-circuit at DC, which is the state the circuit is in for t < 0 and t = ∞ .

For
$$t < 0$$
: $i_L(t) = \frac{24V}{6\Omega} = 4A$ and $i_2(t < 0) = 0$

For $t = \infty$: notice the switch is open so the voltage source and $6k\Omega$ resistor are out of the circuit. Inductor is also short-circuit and since there is no independent source $\rightarrow i_L(t = \infty) = 0$.

From KCL we see after the switch is open $i_2(t) = -i_L(t)/3$ and the current passing R₃ $i_1(t) = -2i_L(t)/3$.

The equivalent resistance seen from the inductor is $R_2 || R_1 = 2\Omega \rightarrow circuit$ time constant = T = L/R = 2H/2\Omega = 1s

Solving for first order differential equation, we know for t > 0:

 $i_{L}(t) = i_{L}(t=\infty) + [i_{L}(t=0^{+}) - i_{L}(t=\infty)]e^{\frac{-t}{T}} \text{ and } i_{L}(t) = -3i_{2}(t)$

→
$$i_L(t) = 0 + [4 - 0]e^{\frac{-t}{1}} (mA) = 4e^{\frac{-t}{1}} (mA)$$
 and $i_2(t) = -\frac{4}{3}e^{\frac{-t}{1}} (A)$

May 25th, 2017, 11:00 am to 12:10 pm Professor Peter Burke

ID no.:_____

PROBLEM 4: (20 points)

The switch in the circuit in the figure below was open for a long time (from $t = -\infty$ till t = 0) and is closed at t = 0. Assume the capacitor is completely discharged before t = 0. Opamp is ideal.

(a) Find the current supplied by the voltage source, $i_s(t)$ for t > 0.

(b) Find the voltage across the capacitor, $v_C(t)$ at t = 2s.

$i_{S}(t)$	0.3mA
$v_{c}(t)$	6V

SOLUTION:

for t < 0 capacitor is fully discharged so $v_C(t < 0) = 0$. After the switch closes, we will have the circuit below :

Opamp is ideal \rightarrow negative and positive opamp input pins have the same voltage: $V_{-} = V_{+} = 0V \rightarrow i_{S}(t) = 3V / 10k\Omega = 0.3mA$.

Since no current enters the opamp input pins, $i_s(t)$ has nowhere to go but through the capacitor: $i_c(t) = i_s(t) = 0.3$ mA.

For capacitor we know: $i_c(t) = C \frac{dv_c(t)}{dt}$ or $v_c(t) = \int \frac{1}{c} i_c(t) dt \rightarrow$ To find the voltage at t = 2 we do the integration fro t = 0 to t = 2: $v_c(t) = \int_0^2 10^4 \times 0.3 mA dt = \int_0^2 3 dt = 6V$