\qquad
\qquad Professor Peter Burke

Q1	Q2	Q3	Q4	Total
$/ 20$	$/ 30$	$/ 30$	$/ 20$	$/ 100$

EECS / CSE 70A Midterm Exam \#2 SOLUTION KEY

DO NOT BEGIN THE EXAM UNTIL YOU ARE TOLD TO DO SO.

Print your name on all pages.

Write your solutions in clear steps with concise explanations.
\qquad
May $25^{\text {th }}, 2017,11: 00$ am to $12: 10 \mathrm{pm}$ Professor Peter Burke
\qquad

PROBLEM 1: (20 points)

Assuming ideal op-amp:
(a) Calculate currents I_{1}, I_{2} and I_{3}.
(b) Find the output voltage v_{0}

I_{1}	0.5 mA
I_{2}	2 mA
I_{3}	-1.5 mA
v_{o}	3 V

SOLUTION:

Opamp is ideal so voltage at its positive and negative inputs are equal: $\mathbf{V}_{+}=\mathbf{V}_{-}$ $=2 \mathrm{~V}$ and there is no current flowing in to the opamp input pins.

$$
\begin{gathered}
I_{3}=\frac{V_{-}-V_{2}}{2 k \Omega}=-1.5 m A \\
I_{2}=\frac{V_{-}}{1 k \Omega}=2 m A
\end{gathered}
$$

KCL at $\mathrm{V}_{-}: \mathrm{I}_{1}=\mathrm{I}_{\mathbf{2}}+\mathrm{I}_{\mathbf{3}}=\mathbf{0 . 5 m A}$
KVL: vo = V $-+2 k \Omega * I_{1}=2+1=3 V$
\qquad
May $25^{\text {th }}, 2017,11: 00$ am to $12: 10 \mathrm{pm}$
ID no.: \qquad
Professor Peter Burke
PROBLEM 2: (30 points)
The switch in the circuit in the figure below has been closed for a long time $($ from $t=-\infty$ till $t=0)$ and is opened at $t=0$.
(a) Find the voltage across the capacitor, $v_{C}(t)$ for $t>0$.
(b) Find the current passing through the $1 \mathrm{k} \Omega$ resistor for $\mathbf{t}>0$.

$v_{C}(t)$	$v_{C}(t)=8 e^{\frac{-t}{0.06}}(V)$
$i(t)$	$i(t)=1.33 e^{\frac{-t}{0.06}}(m A)$

SOLUTION:

Capacitor is open-circuit at DC , which is the state the circuit is in for $\mathbf{t}<0$ and $t=\infty$.

For $t<0: v_{C}(t)=\frac{5 k \Omega+1 \mathrm{k} \Omega}{5 k \Omega+1 \mathrm{k} \Omega+3 \mathrm{k} \Omega} \times 12 V=8 V$ and $i(t)=\frac{12 V}{5 k \Omega+1 \mathrm{k} \Omega+3 \mathrm{k} \Omega}=$ 1.33mA

For $t=\infty$: notice the switch is open so the voltage source and $3 \mathrm{k} \Omega$ resistors are out of the circuit. Capacitor is also open-circuit so no current passes through it $\rightarrow v_{C}(t=\infty)=0$ and $i(t=\infty)=0$.

After the switch opens, capacitor sees $1 \mathrm{k} \Omega$ and $5 \mathrm{k} \Omega$ series resistances \rightarrow circuit time constant $=T=R C=6 \mathrm{k} \Omega \times 10 \mathrm{uF}=6 \times 10^{-2} \mathrm{~s}$

Solving for first order differential equation, we know for $\mathbf{t}>0$:

$$
\begin{aligned}
& \mathbf{v}_{C}(t)=v_{C}(t=\infty)+\left[v_{C}\left(t=0^{+}\right)-v_{C}(t=\infty)\right] e^{\frac{-t}{T}} \text { and } i(t)=i(t=\infty)+\left[i\left(t=0^{+}\right)-i(t=\infty)\right] e^{\frac{-t}{T}} \\
& \rightarrow v_{C}(t)=8 e^{\frac{-t}{0.06}}(V) \text { and } i(t)=1.33 e^{\frac{-t}{0.06}}(m A)
\end{aligned}
$$

\qquad
May $25^{\text {th }}, 2017,11: 00$ am to $12: 10 \mathrm{pm}$
ID no.: \qquad
Professor Peter Burke
PROBLEM 3: (30 points)
The switch in the circuit in the figure below was closed for a long time and is opened at $t=0$.
(a) Find the expression of the $i_{L}(t)$ for $t>0$.
(b) Find the expression of the current passing R_{2}, $i_{\mathbf{2}}(t)$ for $t>0$.

$i_{L}(t)$	$4 e^{\frac{-t}{1}}(\mathrm{~A})$
$i_{2}(t)$	$-\frac{4}{3} e^{\frac{-t}{1}}(\mathrm{~A})$

SOLUTION:
inductor is short-circuit at DC , which is the state the circuit is in for $\mathbf{t}<0$ and $t=\infty$.

For $\mathrm{t}<0: i_{L}(t)=\frac{24 V}{6 \Omega}=4 A$ and $i_{2}(t<0)=0$
For $t=\infty$: notice the switch is open so the voltage source and $6 \mathrm{k} \Omega$ resistor are out of the circuit. Inductor is also short-circuit and since there is no independent source $\rightarrow \boldsymbol{i}_{L}(t=\infty)=0$.

From KCL we see after the switch is open $i_{2}(t)=-i_{L}(t) / 3$ and the current passing $R_{3} i_{1}(t)=-2 i_{L}(t) / 3$.

The equivalent resistance seen from the inductor is $\mathbf{R}_{\mathbf{2}} \| \mathbf{R}_{\mathbf{1}}=\mathbf{2 \Omega} \rightarrow$ circuit time constant $=T=L / R=2 H / 2 \Omega=1 s$

Solving for first order differential equation, we know for $\mathbf{t}>0$:

$$
\begin{aligned}
& i_{L}(t)=i_{L}(t=\infty)+\left[i_{L}\left(t=0^{+}\right)-i_{L}(t=\infty)\right] e^{\frac{-t}{T}} \text { and } i_{L}(t)=-3 i_{2}(t) \\
& \rightarrow i_{L}(t)=0+[4-0] e^{\frac{-t}{1}}(\mathrm{~mA})=4 e^{\frac{-t}{1}}(\mathrm{~mA}) \text { and } i_{2}(t)=-\frac{4}{3} e^{\frac{-t}{1}}(A)
\end{aligned}
$$

\qquad
May $25^{\text {th }}, 2017,11: 00$ am to $12: 10 \mathrm{pm}$
ID no.: \qquad
Professor Peter Burke

PROBLEM 4: (20 points)

The switch in the circuit in the figure below was open for a long time (from $t=$ $-\infty$ till $t=0$) and is closed at $t=0$. Assume the capacitor is completely discharged before $t=0$. Opamp is ideal.
(a) Find the current supplied by the voltage source, $i_{s}(t)$ for $t>0$.
(b)Find the voltage across the capacitor, $v_{C}(t)$ at $t=2 \mathrm{~s}$.

$\boldsymbol{i}_{S}(t)$	0.3 mA
$\boldsymbol{v}_{\boldsymbol{C}}(t)$	6 V

SOLUTION:

for $\mathbf{t}<\mathbf{0}$ capacitor is fully discharged so $\mathbf{v}_{\mathbf{C}}(\mathbf{t}<\mathbf{0})=\mathbf{0}$. After the switch closes, we will have the circuit below :

Opamp is ideal \rightarrow negative and positive opamp input pins have the same voltage: $\mathrm{V}_{-}=\mathrm{V}_{+}=0 \mathrm{~V} \rightarrow \mathrm{i}_{\mathrm{S}}(\mathrm{t})=\mathbf{3 V} / 10 \mathrm{k} \Omega=0.3 \mathrm{~mA}$.

Since no current enters the opamp input pins, $i_{s}(t)$ has nowhere to go but through the capacitor: $i_{C}(t)=i_{s}(t)=0.3 \mathrm{~mA}$.

For capacitor we know: $i_{C}(t)=C \frac{d v_{C}(t)}{d t}$ or $v_{C}(t)=\int \frac{1}{C} i_{C}(t) d t \rightarrow$
To find the voltage at $t=2$ we do the integration fro $t=0$ to $t=2$:
$v_{C}(t)=\int_{0}^{2} 10^{4} \times 0.3 \mathrm{mAdt}=\int_{0}^{2} 3 d t=6 \mathrm{~V}$

