# PROBLEM 4: (20 points)

The switch in the circuit in the figure below was open for a long time (from  $t = \frac{1}{2}$ )  $-\infty$  till t = 0) and is closed at t = 0. Assume the capacitor is completely discharged before t = 0. Opamp is ideal.

- (a) Find the current supplied by the voltage source,  $i_s(t)$  for t > 0.
- (b) Find the voltage across the capacitor,  $v_c(t)$  at t = 2s.



| * | Some of very | 1000 | is (t) | 0-3V | is(4): | 10 KZ |
|---|--------------|------|--------|------|--------|-------|
|   | V-           | A No | ***    |      |        |       |

### PROBLEM 2: (30 points)

The switch in the circuit in the figure below has been closed for a long time (from  $t = -\infty$  till t = 0) and is opened at t = 0.

- (a) Find the voltage across the capacitor,  $v_c(t)$  for t > 0.
- (b) Find the current passing through the  $1k\Omega$  resistor for t>0.



$$\frac{V - 12}{6} = 0$$
 $V - 12 = 0$ 
 $V = 12$ 
Page 3 of 5.

## PROBLEM 3: (30 points)

111

The switch in the circuit in the figure below was closed for a long time and is opened at t=0.

- (a) Find the expression of the  $i_L(t)$  for t > 0.
- (b) Find the expression of the current passing  $R_2$ ,  $i_2(t)$  for t > 0.



### PROBLEM 4: (20 points)

The switch in the circuit in the figure below was open for a long time (from  $t = -\infty$  till t = 0) and is closed at t = 0. Assume the capacitor is completely discharged before t = 0. Opamp is ideal.

- (a) Find the current supplied by the voltage source,  $i_s(t)$  for t > 0.
- (b) Find the voltage across the capacitor,  $v_c(t)$  at t = 2s.



$$V_{c}(t)=3e^{-t}$$
 $V_{c}(z)=3e^{-2}$ 



Page 5 of 5.

### PROBLEM 4: (20 points)

The switch in the circuit in the figure below was open for a long time (from  $t = -\infty$  till t = 0) and is closed at t = 0. Assume the capacitor is completely discharged before t = 0. Opamp is ideal.

- (a) Find the current supplied by the voltage source,  $i_s(t)$  for t > 0.
- (b) Find the voltage across the capacitor,  $v_c(t)$  at t = 2s.



×. 9600010

The switch in the circuit in the figure below has been closed for a long time 000060000 (from  $t = -\infty$  till t = 0) and is opened at t = 0. 6000

- (a) Find the voltage across the capacitor,  $v_C(t)$  for t > 0.
- (b) Find the current passing through the  $1k\Omega$  resistor for t > 0.



#### PROBLEM 2: (30 points)

The switch in the circuit in the figure below has been closed for a long time (from  $t = -\infty$  till t = 0) and is opened at t = 0.

- (a) Find the voltage across the capacitor,  $v_c(t)$  for t > 0.
- (b) Find the current passing through the  $1k\Omega$  resistor for t > 0.



Page 3 of 5.

#### PROBLEM 3: (30 points)

The switch in the circuit in the figure below was closed for a long time and is opened at t=0.

- (a) Find the expression of the  $i_L(t)$  for t > 0.
- (b) Find the expression of the current passing  $R_2$ ,  $i_2(t)$  for t > 0.







May 25<sup>th</sup>, 2017, 11:00 am to 12:10 pm Professor Peter Burke ID no.:\_\_\_\_

#### PROBLEM 2: (30 points)

The switch in the circuit in the figure below has been closed for a long time (from  $t = -\infty$  till t = 0) and is opened at t = 0.

(a) Find the voltage across the capacitor,  $v_C(t)$  for t > 0.

(b) Find the current passing through the  $1k\Omega$  resistor for t > 0



| $v_{\mathcal{C}}(t)$ | 12e-6     | *105+ V | 1            |
|----------------------|-----------|---------|--------------|
| i(t)                 | -72 e-6x1 | 15+ A   | C Higgs cons |





$$(4) = V^2$$



X 38