EECS/CSE 70A Network Analysis I

Homework \#1 Solution

Problem 1: Find the power absorbed or supplied by each element.
Solution:

$\mathrm{P}_{1}=\mathrm{V}_{\mathrm{ab}} \mathrm{I}_{1}$ and $\mathrm{P}_{2}=\mathrm{V}_{\mathrm{ab}} \mathrm{I}_{2}$
$\rightarrow \mathrm{P}_{1}=(3 \mathrm{~V}) \times(0.5 \mathrm{~A})=1.5 \mathrm{~W}$ and $\mathrm{P}_{2}=$ $(3 \mathrm{~V}) \mathrm{x}(1.5 \mathrm{~A})=4.5 \mathrm{~W}$
$\mathrm{P}>0$, therefore the element is a power sink (it absorbs power)

Problem 2: Find the power absorbed or supplied by each element.

Solution:

$\mathrm{P}_{1}=\mathrm{V}_{\mathrm{ab}}\left(-\mathrm{I}_{1}\right)$ and $\mathrm{P}_{2}=\mathrm{V}_{\mathrm{ab}}\left(-\mathrm{I}_{2}\right)$
$\rightarrow \mathrm{P}_{1}=(8 \mathrm{~V}) \mathrm{x}(-7 \mathrm{~A})=-56 \mathrm{~W}$ and $\mathrm{P}_{2}=$ $(8 \mathrm{~V}) x(-1.5 \mathrm{~A})=-12 \mathrm{~W}$
$\mathrm{P}<0$, therefore the element is a power source (it supplies power)

Problem 3: Find the current I_{3} and I_{5} flowing through elements 3 and 5 .

Solution:

$$
\begin{aligned}
& \mathrm{I}_{\text {total }}=\mathrm{I}_{2}+\mathrm{I}_{3} \rightarrow 3 \mathrm{~A}=1.5 \mathrm{~A}+\mathrm{I}_{3} \rightarrow \mathrm{I}_{3}=1.5 \mathrm{~A} \\
& \mathrm{I}_{3}=\mathrm{I}_{4}+\mathrm{I}_{5} \rightarrow \mathrm{I}_{5}=1.5 \mathrm{~A}-1 \mathrm{~A}=0.5 \mathrm{~A}
\end{aligned}
$$

Problem 4:
a) Find I_{2}
b) Find the power absorbed or supplied by each element.
c) Is element 1 a source or a sink? Repeat for elements 2,3 and 4 .

Solution:
(a) $\mathrm{I}_{2}=\mathrm{I}_{1}+\mathrm{I}_{4}-\mathrm{I}_{3} \rightarrow \mathrm{I}_{2}=3 \mathrm{~A}+7 \mathrm{~A}-1 \mathrm{~A}=9 \mathrm{~A}$
(b)
$\mathrm{P}_{1}=\mathrm{V}_{1} \mathrm{I}_{1} \rightarrow \mathrm{P} 1=5 \mathrm{~V} \times(-3 \mathrm{~A})=-15 \mathrm{~W}$ (supplied). Similarly:
$\mathrm{P}_{2}=5 \mathrm{~V} \times 9 \mathrm{~A}=45 \mathrm{~W}$ (absorbed)
$\mathrm{P}_{3}=5 \mathrm{~V} \times 1 \mathrm{~A}=5 \mathrm{~W}$ (absorbed)
$\mathrm{P}_{4}=5 \mathrm{~V} \times(-7 \mathrm{~A})=-35 \mathrm{~W}$ (supplied)
(c) Power is positive for elements 2 and 3, negative for elements 1 and 4 . Thus 1 and 4 are power source. Elements 2 and 3 are power sinks.

