EECS/CSE 70A Network Analysis I

Homework \#2 Solution

Problem 1: (VCCS) Find $\mathrm{I}_{3}+\mathrm{I}_{4}$.

Solution:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{ac}}=2.5 \mathrm{~V} \\
& \mathrm{VCCS} \text { current }=\mathrm{I}_{\mathrm{VCCS}}=(3 \mathrm{~A} / \mathrm{V}) \mathrm{V}_{\mathrm{ac}}=7.5 \mathrm{~A} \\
& \mathrm{KCL} @ \text { node b: } \mathrm{I}_{3}+\mathrm{I}_{4}+\mathrm{I}_{\mathrm{VCCS}}=0 \\
& \rightarrow \mathrm{I}_{3}+\mathrm{I}_{4}=-7.5 \mathrm{~A}
\end{aligned}
$$

Problem 2: (CCVS/CCCS) Find I_{1}, I_{2} and $V_{b c}$

Solution:
$\mathrm{V}_{\mathrm{ac}}=2.5 \mathrm{~V}$
KCL @ node a: $\mathrm{I}_{1}+\mathrm{I}_{2}-9 \mathrm{~A}+5 \mathrm{I}_{2}=0$
From the question we know $\mathrm{I}_{1}=\mathrm{I}_{2}+2 \mathrm{~A}$
$\rightarrow \mathrm{I}_{2}=1 \mathrm{~A}, \mathrm{I}_{1}=3 \mathrm{~A}, \mathrm{~V}_{\mathrm{bc}}=5 \mathrm{I}_{1}=5 \mathrm{~V}$

Problem 3: (VCVS) Find V_{bc} and V_{ab}.

Solution:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{ac}}=9 \mathrm{~V} \rightarrow \mathrm{~V}_{\mathrm{bc}}=0.5 \times \mathrm{V}_{\mathrm{ac}}=4.5 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{ab}}=\mathrm{V}_{\mathrm{ac}}-\mathrm{V}_{\mathrm{bc}}=4.5 \mathrm{~V}
\end{aligned}
$$

Problem 4: Find R_{eq}. Please use the parallel sign "//" as discussed in class.

Problem 5: Find $R_{\text {eq }}$.

7

Problem 6: All of the resistors below are $R_{0} \Omega$. Find $R_{e q}$.

Problem 7: Find $R_{\text {eq }}$ using Taylor series approximation of the appropriate function to the second order accuracy.

$$
\begin{aligned}
& f(x)=\frac{1}{1+x} \\
& f(x)=f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}
\end{aligned}
$$

$\left(\mathrm{R}_{\mathrm{eq}}=\frac{1 M * 1}{1 M+1}=\frac{1}{1+10^{-6}}\right)$
For the Taylor series (which is expanded up to the second order) we have $\mathrm{a}=0$ and we want to evaluate the function at $\mathrm{x}=10^{-6}$

$$
R_{e q}=f(x)=1+\frac{-1}{1!}\left(10^{-6}\right)+\frac{2}{2!}\left(10^{-6}\right)^{2}=0.999999000001
$$

Problem 8: (Potentiometer) In the circuit below, the wiper divides the potentiometer resistance R between two resistances $R(1-\alpha)$ and $R \alpha$ where $0<\alpha<1 . \alpha$ is a parameter modeling the wiper's position. Find the value of α such that the output voltage $V_{\text {out }}$ becomes one-third of V_{s}


```
Solution:
I}=\mp@subsup{\textrm{V}}{\textrm{S}}{}/(\textrm{R}+\textrm{R}(1-\alpha)+\textrm{R}\alpha)=\mp@subsup{\textrm{V}}{\textrm{s}}{}/(2\textrm{R}
\mp@subsup{V}{\mathrm{ out }}{}=\textrm{R}\alpha\times\textrm{I}=\textrm{R}\alpha\times\mp@subsup{\textrm{V}}{\textrm{s}}{}/(2\textrm{R})
We need }\mp@subsup{\textrm{V}}{\mathrm{ out }}{}=\mp@subsup{\textrm{V}}{\textrm{s}}{}/3->\alpha=2/
```

