EECS/CSE 70A Network Analysis I

Homework #2 Solution

Problem 1: (VCCS) Find $I_3 + I_4$.

Solution: $V_{ac} = 2.5V$ VCCS current = $I_{VCCS} = (3A/V) V_{ac} = 7.5A$ KCL @ node b: $I_3 + I_4 + I_{VCCS} = 0$ $\Rightarrow I_3 + I_4 = -7.5A$ Problem 2: (CCVS/CCCS) Find I₁, I₂ and V_{bc}

Solution: $V_{ac} = 2.5 V$ KCL @ node a: $I_1 + I_2 - 9A + 5I_2 = 0$ From the question we know $I_1 = I_2 + 2A$ $\rightarrow I_2 = 1 A$, $I_1 = 3 A$, $V_{bc} = 5I_1 = 5 V$ Problem 3: (VCVS) Find V_{bc} and V_{ab} .

Solution:

$$V_{ac} = 9V \rightarrow V_{bc} = 0.5 \times V_{ac} = 4.5V$$
$$V_{ab} = V_{ac} - V_{bc} = 4.5V$$

Problem 4: Find R_{eq} . Please use the parallel sign "//" as discussed in class.

Problem 6: All of the resistors below are $R_0 \Omega$. Find R_{eq} .

Problem 7: Find R_{eq} using Taylor series approximation of the appropriate function to the second order accuracy.

$$(R_{eq} = \frac{1M * 1}{1M + 1} = \frac{1}{1 + 10^{-6}})$$

 $f(x) = \frac{1}{1+x}$ $f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2$

For the Taylor series (which is expanded up to the second order) we have a = 0 and we want to evaluate the function at $x = 10^{-6}$

$$R_{eq} = f(x) = 1 + \frac{-1}{1!} (10^{-6}) + \frac{2}{2!} (10^{-6})^2 = 0.999999000001$$

Problem 8: (Potentiometer) In the circuit below, the wiper divides the potentiometer resistance R between two resistances R(1- α) and R α where 0< α <1. α is a parameter modeling the wiper's position. Find the value of α such that the output voltage V_{out} becomes one-third of V_s

Solution: $I = V_s / (R + R(1-\alpha) + R\alpha) = V_s / (2R)$ $V_{out} = R\alpha \times I = R\alpha \times V_s / (2R)$ We need $V_{out} = V_s/3 \rightarrow \alpha = 2/3$