EECS/CSE 70A Network Analysis I

Homework #4

Solution Key

Problem 1: (Ideal Opamp) Find the output voltage v_o (20pts.)

Solution:

Ideal opamp \rightarrow A = ∞ , opamp input resistance $R_{in} = \infty$ and opamp output resistance $R_0 = 0$. KCL at V₊: $\frac{5-V_+}{9} + \frac{5-V_+}{11} + \frac{9-V_+}{5} = 0 \rightarrow$ $V_{\rm o}$ V₊ = 7V $A = \infty \rightarrow V_{+} = V_{-} = 7V$ (Virtual ground at the input) KCL at V: $\frac{V_{-}}{9} = \frac{v_{o} - V_{-}}{14} \rightarrow v_{o} = 17.9V$ Note that since R_{in} is infinity, no current is entering either of the opamp inputs.

Problem 2: Find the equivalent Thevenin output resistance if the opamp is modeled as the circuit in the green box in terms of R_i, R_o and A (10pts.)

Solution:

First we nullify the independent sources. Second we apply a test voltage source at the output and determine how much current is drawn from it. The ratio of the test voltage and the drawn current is the Thevenin resistance.

Problem 2: Find the equivalent Thevenin output resistance if the opamp is modeled as the circuit in the green box in terms of R_i, R_o and A (10pts.)

Solution Continued:

The equivalent circuit is shown below:

The current passing R_i is I₁ = V_{test}/(R_i + R_s). Therefore, voltage across the R_i is: $V_+ - V_- = \frac{-R_i}{R_i + R_s} V_{test}$ Now we can calculate I₂ (the current flowing into the opamp output):

$$I_2 = [V_{test} - A(V_+ - V_-)]/R_o = \frac{(V_{test} - \frac{-AR_i}{R_i + R_s}V_{test})}{R_o} = \frac{V_{test}(1 + \frac{AR_i}{R_i + R_s})}{R_o}$$

Now from KCL we have:

$$I_{\text{test}} = I_1 + I_2 = V_{test} \left[\frac{\left(1 + \frac{AR_i}{R_i + R_s} \right)}{R_o} + \frac{1}{R_i + R_s} \right]$$

$$\Rightarrow R_{\text{th}} = \frac{V_{test}}{I_{test}} = 1 / \left[\frac{\left(1 + \frac{AR_i}{R_i + R_s} \right)}{R_o} + \frac{1}{R_i + R_s} \right]$$

Problem 2: (RC circuit) Find the expression of $v_c(t)$ for t > 0. What is the circuit time constant after switch is closed? Plot the $v_c(t)$ for $-\infty < t < \infty$ (35pts.)

for t > 0, switch is closed and the capacitor is getting discharged. The equivalent circuit after switch is closed:

Solution:

At t < 0, switch is open and the capacitor is open circuit. The voltage across the capacitor at t < 0 can be derived using the equivalent circuit below:

 \rightarrow v_c(t < 0) = 3V

Problem 2: (RC circuit) Find the expression of $v_c(t)$ for t > 0. What is the circuit time constant after switch is closed? Plot the $v_c(t)$ for $-\infty < t < \infty$ (35pts.)

Solution Continued:

Circuit time constant T is $R_{eq}C$, where R_{eq} is the total resistance seen by the capacitor: $R_{eq} = 4 k\Omega || (4 k\Omega + 2 k\Omega) = 2.4 k\Omega$ $\rightarrow T = 0.24$

The current through capacitor vanishes, and the voltage decays towards zero at $t = \infty \rightarrow v_c(t = \infty) = 0$

Problem 3: (RL circuit) Find the expression of $i_{L}(t)$ for t > 0. What is the circuit time constant after switch is closed? Plot the $i_{L}(t)$ for $-\infty < t < \infty$ (35pts.)

Solution:

At t < 0, switch is open and the inductor has is discharged so $i_1(t < 0) = 0$.

After switch closes and at $t = \infty$, the inductor will become short circuit and the equivalent circuit below results:

Using nodal analysis we can find $i_{L}(t = \infty)$: $V_{1}(1/6 + 1/12) = -V_{2}(1/6 + 1/3), V_{2} = V_{1} + 6$ $\rightarrow V_{1} = 4V, V_{2} = 2V \rightarrow i_{L}(t = \infty) = V_{2}/3 = 2/3A$ Problem 3: (RL circuit) Find the expression of $i_{L}(t)$ for t > 0. What is the circuit time constant after switch is closed? Plot the $i_{L}(t)$ for $-\infty < t < \infty$ (35pts.)

Solution Continued: The circuit time constant is $T = L/R_{eq}$ where R_{eq} is the total resistance as seen from the inductor: $R_{eq} = 12\Omega || 6\Omega || 6\Omega + 3\Omega = 5.4\Omega$ $\Rightarrow T = 0.37s$ $i_L(t) = i_L(t = \infty) + [i_L(t = 0) - i_L(t = \infty)] e^{\frac{-t}{T}}$ $i_L(t) = 2/3 + (-2/3)e^{\frac{-t}{0.37}}$