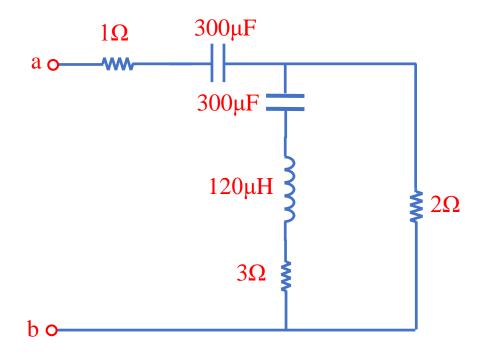
EECS/CSE 70A Network Analysis I

Homework #6

Due on or before 6/6/2017, Tuesday 6.00pm ONLINE ONLY Problem 1 (20pts)

Part (a): u = (A + jB)(C + jD) $\operatorname{Re}\left\{u\right\}$ Find $\operatorname{Re}\left\{ue^{j\omega t}\right\}$ Find Express *u* as u = x + iy $\operatorname{Im}\left\{ u\right\}$ $u = re^{j\phi}$ Part (b): $u = \frac{A + jB}{C + jD}$ $\operatorname{Re}\left\{u\right\}$ Express *u* as u = x + iy $u = re^{j\phi}$ Find $\operatorname{Re}\left\{ue^{j\omega t}\right\}$ Find $\operatorname{Im}\left\{u\right\}$

Problem 2 (20pts.)

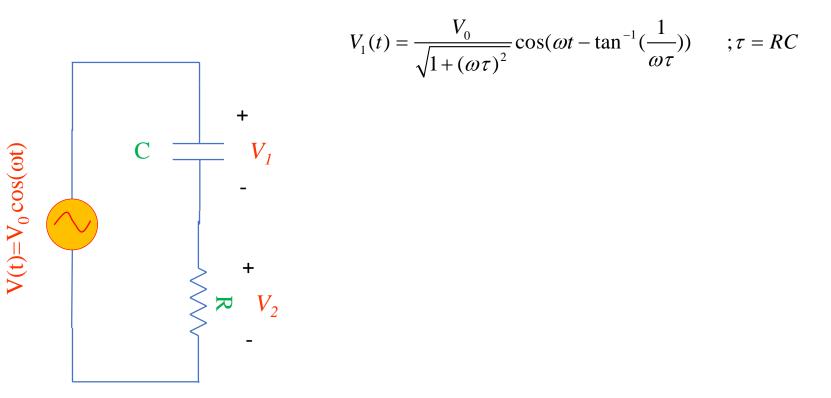

Part (a): Find the current $i_{\rm C}(t)$ at the frequency 80Hz.

$$v(t) = 4\cos\left(\omega t - \frac{\pi}{3}\right) \checkmark + 5\mu F$$

Part (b): Find the voltage $v_c(t)$ at the frequency 30Hz.

Problem 3 (30pts.)

Part (a): Find the impedance seen from terminals a-b as a function of the angular frequency ω .



Part (b): Evaluate the impedance at 750Hz Part (c): Evaluate the impedance at 3kHz Problem 4: (20 pts)

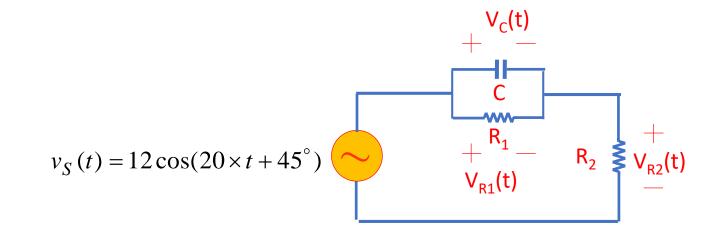
Find the relationship of the phase shift between i(t) and v(t) in terms of the impedance Z for an element.

Problem 5: (40 pts)

For the circuit shown below, by writing all the steps, prove that

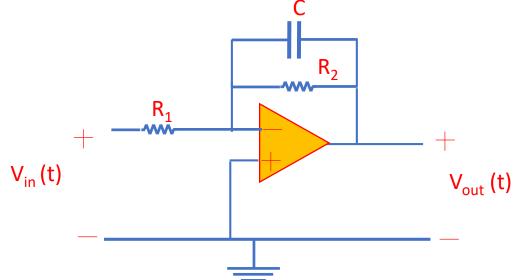
Problem 6: (20 pts)

For the circuit shown below, find i(t), $v_L(t)$, $v_{R1}(t)$ and $v_{R2}(t)$


$$v_{S}(t) = 12\cos(10 \times t + 30^{\circ})$$

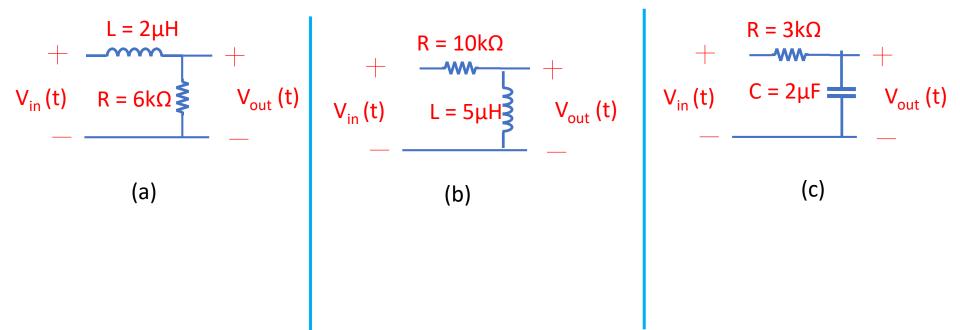
$$(t) = 12\cos(10 \times t + 30^{\circ})$$

Problem 7: (20 pts)


a) Determine the type of the filter shown below based on L, R₁ and R₂. b) Plot V_{out} (t) versus V_{in}(t) for the following cases i) $\omega \rightarrow 0$ ii) $\omega = 1/\tau$ iii) $\omega \rightarrow \infty$ + V_{in} (t) R_1 R_2 V_{out} (t) Problem 8: (20 pts)

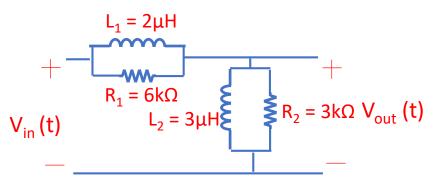
For the circuit shown below, find $i_c(t)$, $v_c(t)$, $v_{R1}(t)$ and $v_{R2}(t)$

Problem 9: (20 pts)


a) Determine the type of the filter shown below based on C, R_1 and R_2 . b) Plot V_{out} (t) versus V_{in} (t) for the following cases i) $\omega \rightarrow 0$ ii) $\omega = 1/\tau$ iii) $\omega \rightarrow \infty$

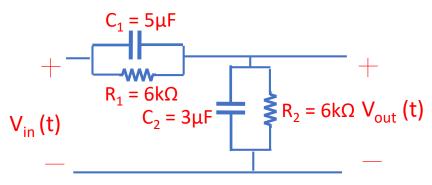
Problem 10: (90 pts)

For each of the circuits shown below

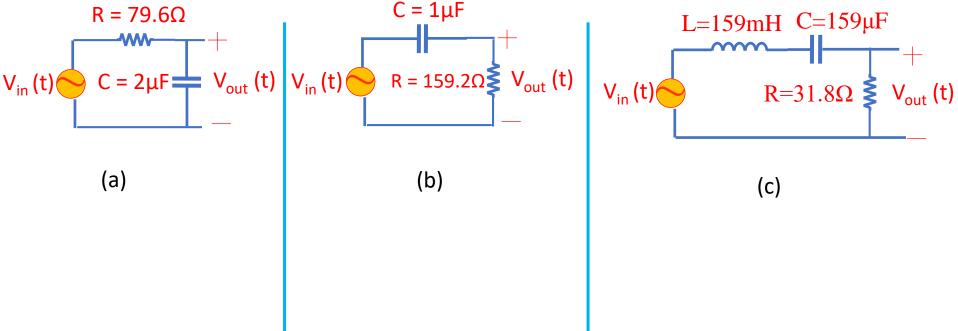

- i) Find the transfer function $H(\omega)$, $|H(\omega)|$ and $\angle H(\omega)$
- ii) Plot $|H(\omega)|$ for linear-linear and log-log scales.
- iii) Plot \angle H(ω) for linear-log scales.

Problem 11: (30 pts)

For the circuit shown below


- i) Find the transfer function $H(\omega)$, $|H(\omega)|$ and $\angle H(\omega)$
- ii) Plot $|H(\omega)|$ for linear-linear and log-log scales.
- iii) Plot \angle H(ω) for linear-log scales.

Problem 12: (30 pts)


For the circuit shown below

- i) Find the transfer function $H(\omega)$, $|H(\omega)|$ and $\angle H(\omega)$
- ii) Plot $|H(\omega)|$ for linear-linear and log-log scales.
- iii) Plot \angle H(ω) for linear-log scales.

Problem 13: (60 pts)

Find the output voltage as $V_{out}(t) = A^{v} \cos(2\pi ft + \varphi)$ where φ is the phase and for f = 1,10,100,1k,10k,100kHz if the input voltage is $V_{in}(t) = 1^{mv} \sin(2\pi ft)$ for each of the following circuits.

Problem 14: (60 pts)

Find the output voltage as $V_{out}(t) = A^{V} \cos(2\pi ft + \varphi)$ where φ is the phase, if the input voltage is $V_{in}(t) = \sum_{i} 1^{mV} \sin(2\pi f_i t)$; $f_i = 1,10,100,1k,10k,100 \text{ kHz}$ for each of the following circuits.

Problem 15: (20 pts)

Draw the Bode plot (magnitude only) for the following transfer function.

$$H(\omega) = \frac{1}{(1+j\omega\tau)(1+j\omega\tau)}$$

Extra credit: Try to design a circuit having such a transfer function. (40 pts)