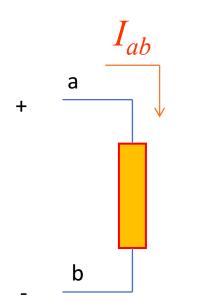
Sign convention



 V_{ab} positive => V_a > V_b I_{ab} positive => current flows from a to b V_{ab} negative => V_a < V_b

I_{ab} negative => current flows from b to a

Define convention first, then solve problem.

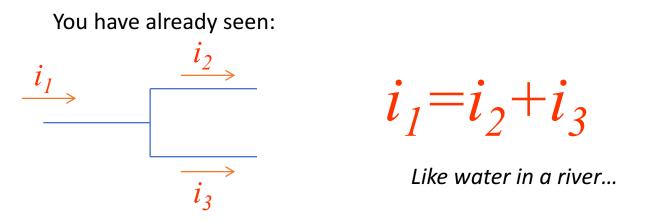
P > 0 means power flowing into element (e.g. resistor)P < 0 means power flowing out of element (e.g. battery)

Topology i_2 $i_1 \rightarrow$ i_3 VVV

Like water in a river...

Voltage same everywhere.... Concept of a node

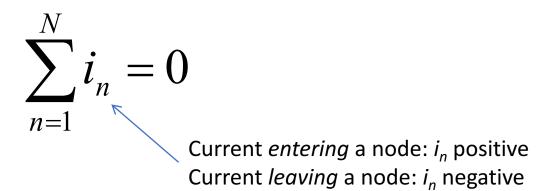
Kirchoff's current law



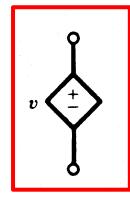
More generally:

Sum of currents *entering* node = sum of currents *leaving* node.

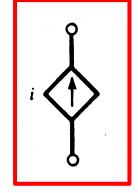
Stated as Kirchoff's current law (KCL):



Dependent sources

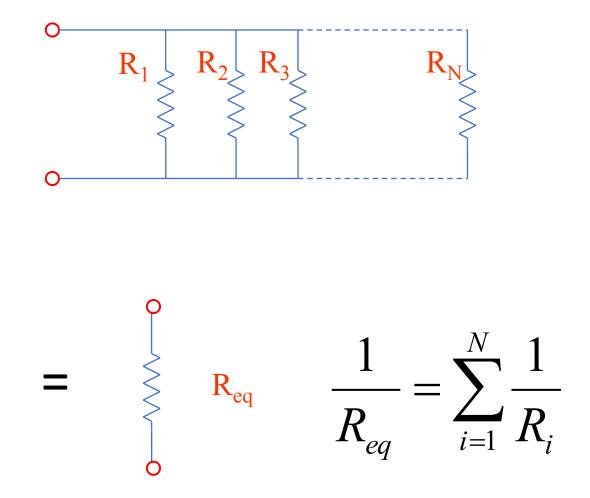


VCVS: Voltage controlled voltage source CCVS: Current controlled voltage source

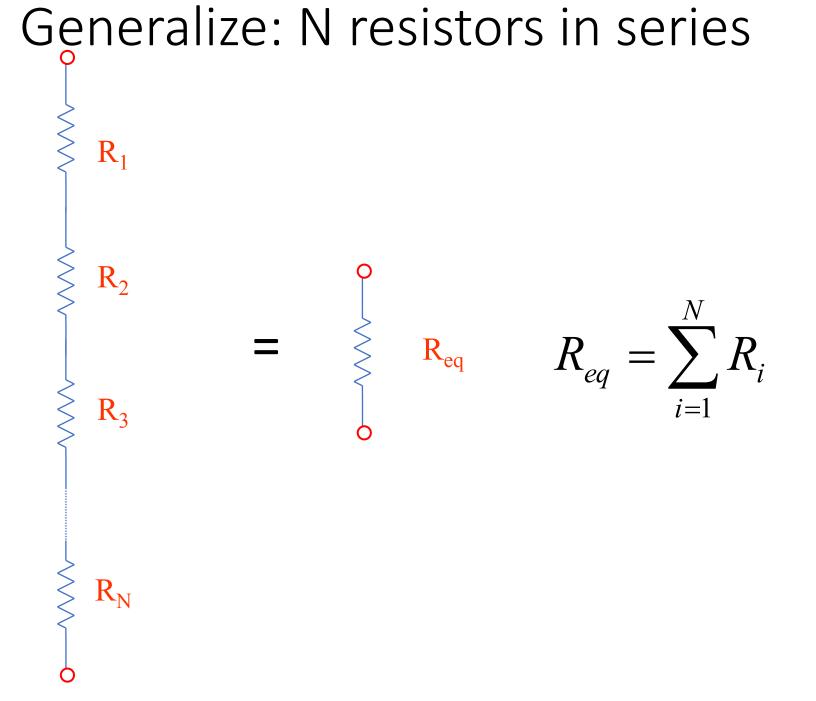


VCCS: Voltage controlled current source CCCS: Current controlled current source

Generalize: N resistors in parallel

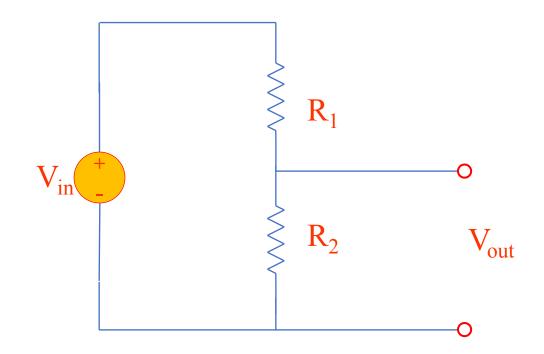


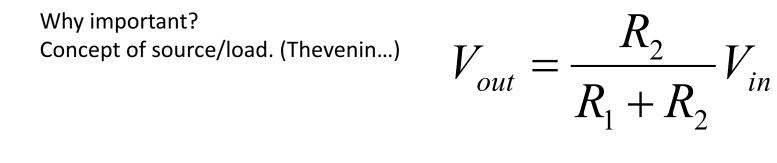
 $R_1 \parallel R_2$ is notation for " R_1 in parallel with R_2 "



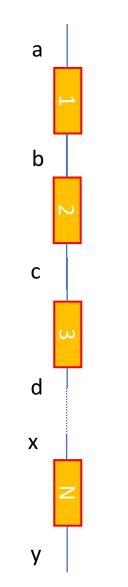
Voltage divider

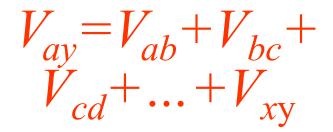
Derivation:





Generalize loop to N-elements:





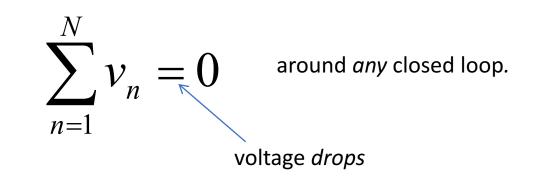
V_{ab} = "voltage drop" across element # 1

V_{bc} = "voltage drop" across element # 2

V_{cd} = "voltage drop" across element # 3

V_{xv} = "voltage drop" across element # N

Kirchoff's voltage law

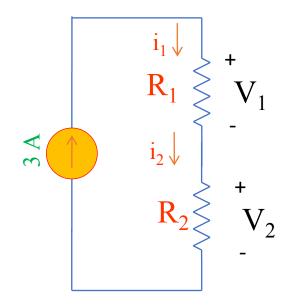


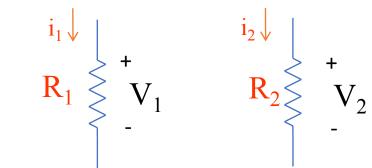
Nodal vs. mesh analysis

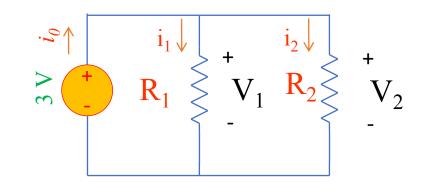
Nodal Analysis \rightarrow write KCL for every node. If a resistor connects to nodes, express the currents in terms of voltage across the element. Your goal is to find all the node voltages first. If a voltage source connects two nodes, circuit can become easier to solve (super node). From there, you can solve for whatever quantity you maybe interested in.

Mesh Analysis: Assign current to all the loops. Then write KVL across each loop. Your goal is to find the loop currents. From there, you can solve for whatever quantity you maybe interested in.

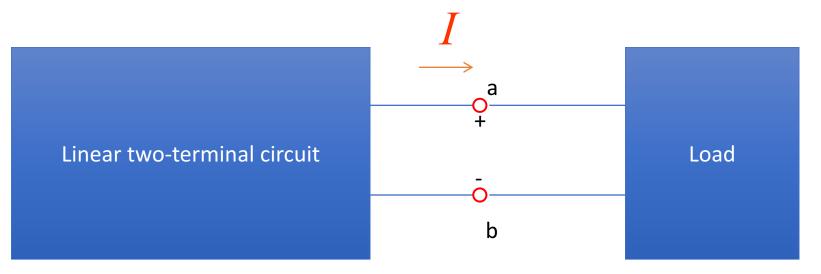
Remember voltage is a relative quantity.



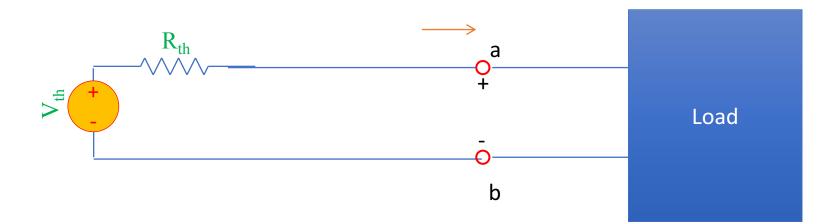




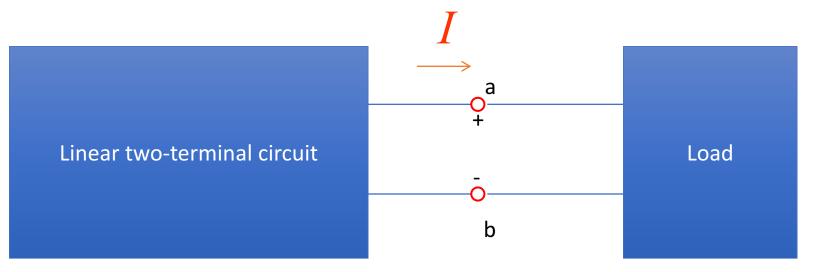
Thevenin's Theorem



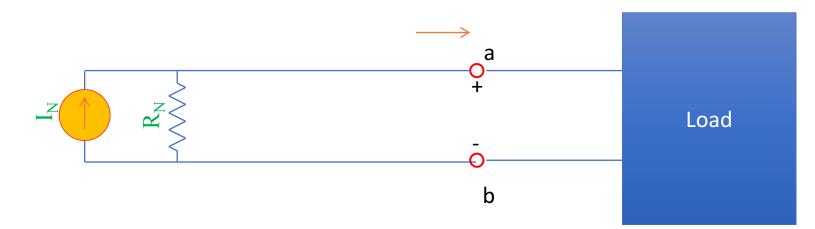
Equivalent to:



Norton's Theorem

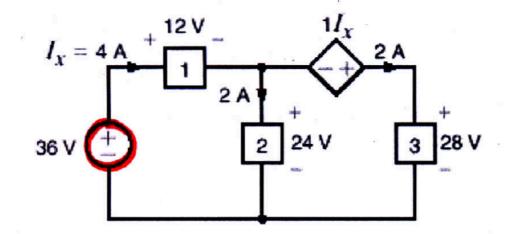


Equivalent to:



Examples

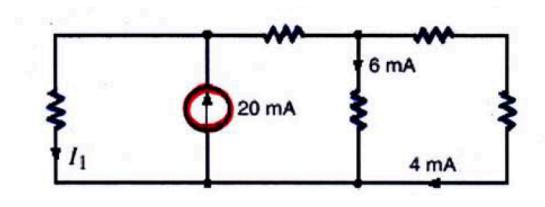
Compute the elements power (sinked or sourced?)



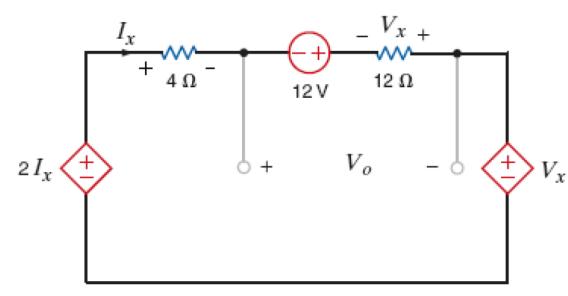
$$P_{36V} = -36(4) = -144 \text{ W}$$

 $P_{36V} = 144 \text{ W}$ supplied
 $P_{1} = 12(4) = 48 \text{ W}$ absorbed
 $P_{2} = 24(2) = 48 \text{ W}$ absorbed
 $P_{1I_{X}} = (-I_{X})(2) = -4(2) = -8 \text{ W}$
 $P_{1I_{X}} = 8 \text{ W}$ supplied
 $P_{3} = 28(2) = 56 \text{ W}$ absorbed

Find I₁

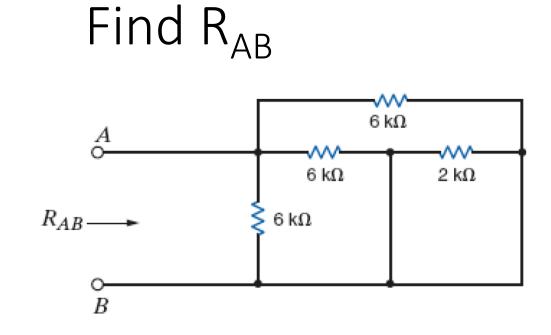


KCL at mode B: $I_2 = Gm + 4m$ $I_2 = 10m A$ KCL at mode A: $I_1 + I_2 = 20m$ $I_1 = 20m - 10m$ $I_1 = 10m A$



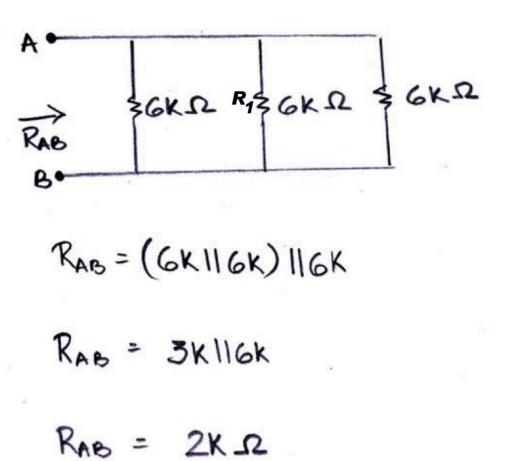
KVL. $V_0 + 12 + V_x = 0$ $V_0 = -V_x - 12$ $V_x = -12 T_x$

KVL around outer loop. $2I_{x} + 12 + V_{x} = 4I_{x} + V_{x}$ 2]x+12+12]x = 4]x +12]x 21x = 12 $I_X = GA$ $V_{\star} = -12(6) = -72V$ Vo= -(-72)-12 Vo= GOV

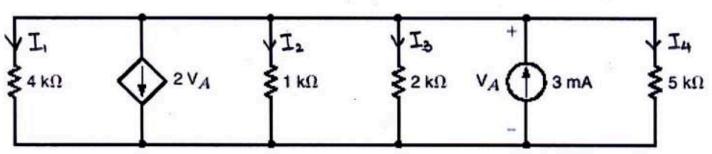


R,=(2K110)+GK

RI= GK D



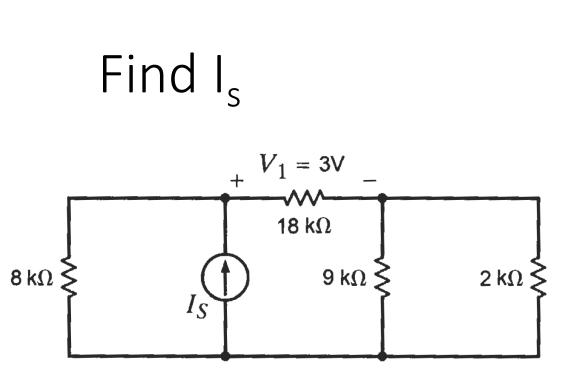
Find the power absorbed/dissipated by the VCCS

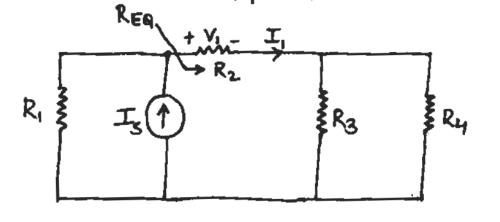


KCL:
$$3m = I_1 + 2V_A + I_2 + I_3 + I_4$$

 $I_1 = \frac{V_A}{4K}, I_2 = \frac{V_A}{1K}, I_3 = \frac{V_A}{2K}, and I_4 = \frac{V_A}{5K}$
 $3m = \frac{V_A}{4K} + 2V_A + \frac{V_A}{1K} + \frac{V_A}{2K} + \frac{V_A}{5K}$
 $GO = 5V_A + 40 K V_A + 20 V_A + 10 V_A + 4 V_A$
 $V_A = 1.5 m V$
 $P_{2VA} = V_A I = V_A (2V_A)$
 $P_{2VA} = 1.5 m (2) (1.5m)$

P2va = 4.5 MW





$$R_{1} = 8 k \Omega, R_{2} = 18 k \Omega, R_{3} = 9 k \Omega, R_{4} = 2 k \Omega$$

$$V_{1} = 3 V$$

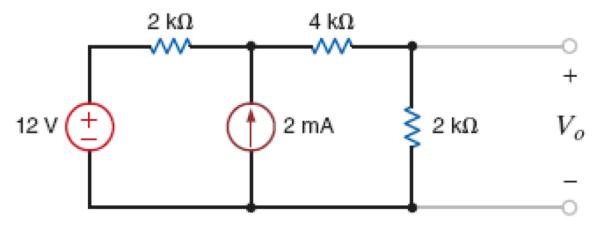
$$R_{EQ} = R_{2} + (R_{3} || R_{4}) = 19.636 = 19.64 k$$

$$I_{1} = \frac{V_{1}}{R_{2}} = \frac{3}{18} = \frac{1}{6} mA$$

$$I_{1} = I_{5} \left[\frac{R_{1}}{R_{1} + R_{EQ}} \right]$$

$$I_{5} = 0.576 mA$$

Find Vo by nodal analysis



$$I_{1} \qquad (9) \qquad 4k \cdot D$$

$$\frac{2k \cdot D}{2k \cdot D} \qquad I_{0} \qquad +$$

$$V_{12} \qquad D_{2mA} \qquad 2k \notin V_{0}$$

$$KCL \quad at (1) : \qquad I_{1} + 2m = I_{0} \qquad \frac{12 - V_{1}}{2k} + 2m = \frac{V_{1}}{4k + 2k}$$

$$36 - 3V_{1} + 12 = V_{1} \qquad 4V_{1} = 48$$

$$V_{1} = 12 \quad V$$

$$I_{0} = \frac{V_{1}}{4k + 2k}$$

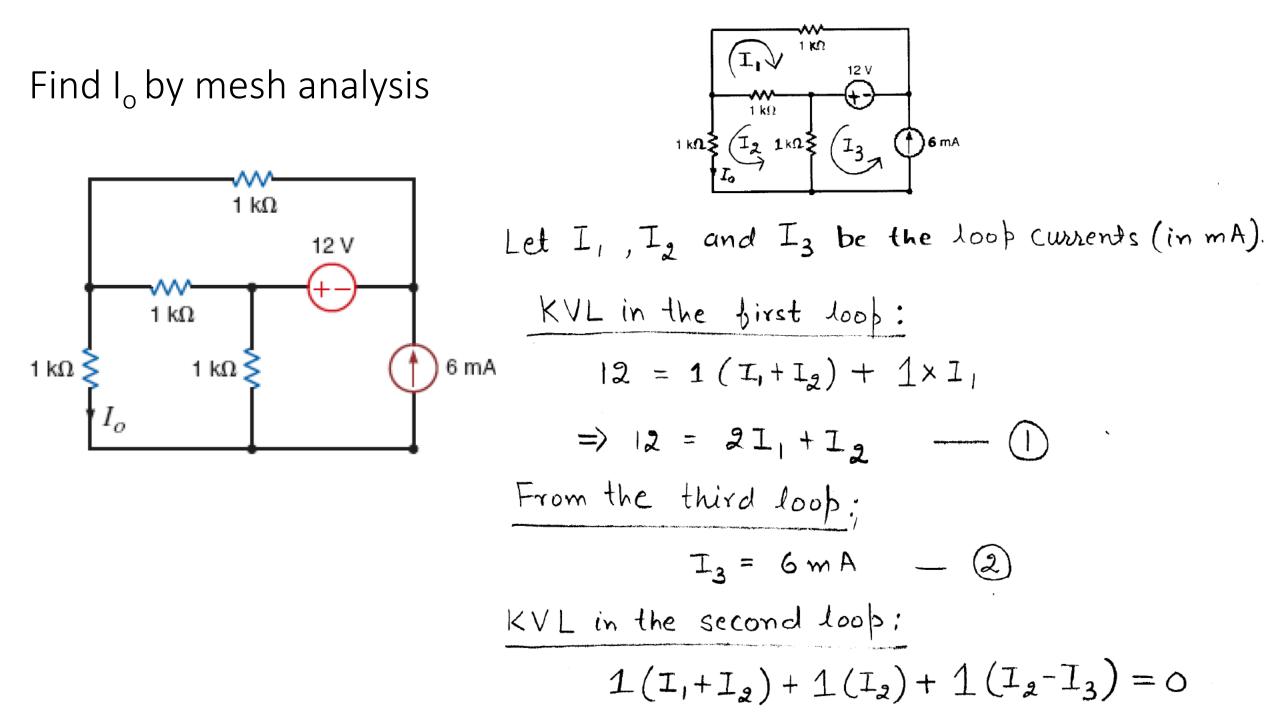
$$= \frac{12}{6k}$$

$$I_{0} = 2m \quad A$$

$$V_{0} = I_{0} (2k)$$

$$= 2m (2k)$$

$$V_{0} = 4 \quad V$$

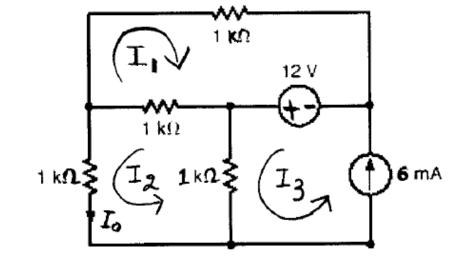


Solution Cont.

$$\Rightarrow I_{1} + 3I_{2} - I_{3} = 0 \quad - \quad (3)$$
From equation (2) β (3), we get:
 $I_{1} + 3I_{2} = I_{3} = 6 \quad - \quad (4)$
From equation (1) β (4):
 $I_{2} = 2I_{1} + I_{2} \quad - \quad (1)$
 $6 = I_{1} + 3I_{2}$
 $\Rightarrow I_{2} = 2I_{1} + 6I_{2} \quad - \quad (5)$
 $5I_{2} = 0 \quad \{ eq.(5) - eq.(1) \}$

$$02 \left[I_2 = 0 \right]$$

Matter Strift March 1, 189 and Mader and Strike and Strike



Find The Thevenin and Norton equivalent seen from the port

