Lectures 14: Graphene/Nanotubes

Allotropes of Carbon

A. Geim and K. Novoselov, "The Rise of Graphene", *Nature Materials*, **6**, 183-191, (**2007**).

Silicon

GaAs

Graphene: 2d semiconductor

Bond length = 0.142 nm

Graphene band structure

Synthesis

Scotch tape a 13A
SiC sublimation
CVD

_1 μm

A. Geim and K. Novoselov, "The Rise of Graphene", *Nature Materials*, **6**, 183-191, (**2007**).

Characterization (DJ)

OpticalRaman

Transport (back gate)

A. Geim and K. Novoselov, "The Rise of Graphene", *Nature Materials*, **6**, 183-191, (**2007**).

Novoselov, K., A. Geim, et al. (2005). "Two-dimensional gas of massless Dirac fermions in graphene." <u>Nature **438**(7065): 197-</u> <u>200.</u>

Graphene RF FET devices

I. Meric, M. Han, A. Young, B. Ozyilmaz, P. Kim and K. Shepard, "Current Saturation in Zero-Bandgap, Top-Gated Graphene Field-Effect Transistors", *Nature Nanotechnology*, **3**, 654-659, **(2008)**. EECS 277B Adv. Semiconduc**(2009)**.^{© 2013 P. Burke</sub>}

J. S. Moon, D. Curtis, M. Hu, D. Wong, C. McGuire, P. M. Campbell, G. Jernigan, J. L. Tedesco, B. VanMil, R. Myers-Ward, C. Eddy and D. K. Gaskill, "Epitaxial-Graphene Rf Field-Effect Transistors on Si-Face 6h-Sic Substrates", *Electron Device Letters, IEEE*, **30**, 650-652, (2009).[©] 2013 P. Burke

Cutoff frequency

Graphene optical properties

$$T_{\rm opt} = \left(1 + \frac{\pi\alpha}{2}\right)^{-2} \approx 1 - \pi\alpha \approx 0.977$$

Nair, R. R., P. Blake, et al. (2008). "Fine Structure Constant Defines Visual Transparency of Graphene." <u>Science **320**(5881): 1308.</u>

Spectrum of absorption

$$\operatorname{Re}\sigma_{xx}(\Omega) = \frac{e^2}{h} |\mu| \frac{4\Gamma}{\Omega^2 + 4\Gamma^2} + \frac{\pi e^2}{2h} \theta \left(\Omega - 2|\mu|\right).$$

Gusynin, V., S. Sharapov, et al. (2009). "On the universal ac optical background in graphene." <u>New Journal of Physics **11**: 095013.</u>

Lectures 14: Carbon Nanotubes

Readings this lecture covers

• Hanson, pp. 170-176

 McEuen review, IEEE Transactions on Nanotechnology, reading packet

k-vector

- Graphite:
 - Arbitratrary k_x, k_y allowed
- o Nanotube:

 $\psi(\phi)=\psi(\phi+2\pi)$

k_{perp} spaced by 2/d

(9,0) armchair nanotube

Semiconducting nanotube

Electrical properties

All armchair metallic
33% of zig-zag metallic
Semiconducting tubes:
Gap = 0.9 eV/d[nm]

Multi-walled nanotube (MWNT)

Shengdong Li, unpublished

Growth technologies

Arc discharge

- Laser ablation
- Chemical vapor deposition (CVD)

EECS 277B Adv. Semiconductor Devices © 2013 P. Burke

Adapted from Dai in *Carbon Nanotub* by Dresselhaus and Dresselhaus Lecture 13, p. 26

Lithographically defined catalysts

Shengdong Li, unpublished

Single Walled Carbon Nanotube

= 0.4 cm d/L = cm/nm = 10⁷

SWNT

 $d = 1.5 W_{PP} d$ Schelkunoff be excited?

Au

Conductivity larger than copper!

S. D. Li, Z. Yu, C. Rutherglen and P. J. Burke, "Electrical Properties of 0.4 Cm Long Single-Walled Carbon Nanotubes", *Nano Letters*, **4**, 2003-2007, **(2004)**.

ΑΠ

Ballistic vs. diffusive transport

Landauer formula:

$$G = n \frac{2e^2}{h}$$

If the leads are not perfect injectors into each "channel" then:

Shengdong Li, Zhen Yu, C. Rutherglen, P. J. Burke "Electrical Properties of 0.4 cm Long Single-Walled Carbon Nanotubes", *Nano Letters*, 2004.

Shengdong Li, Zhen Yu, C. Rutherglen, P. J. Burke "Electrical Properties of 0.4 cm Long Single-Walled Carbon Nanotubes", *Nano Letters*, 2004.

R vs L single tube

Comparison to Cu

[1.] W. Steinhogl, G. Schindler, G. Steinlesberger, M. Traving and M. Engelhardt, "Comprehensive Study of the Resistivity of Copper Wires with Lateral Dimensions of 100 Nm and Smaller", *Journal of Applied Physics*, **97**, 023706, (2005).

=> 1.1 μΩ-cm

regime

Prior dc work:

High-Field Electrical Transport in Single-Wall Carbon Nanotubes $V/I = R_0 + |V|/I_0$ Zhen Yao1, Charles L. Kane2, and Cees Dekker1 Phys. Rev. Lett. 84, 2941 - 2944 (2000) [Issue 13 – March 2000]

Ohmic p-type contact

Ballistic carbon nanotube field-effect transistors

Ali Javey Jing Guo Qian Wang Mark Lundstrom & Hongjie Dai Nature 424, 654 - 657 (2003).

1/4/2016

Ohmic n-type contact

Doping-Free Fabrication of Carbon Nanotube Based Ballistic CMOS Devices and Circuits Zhang, Z.; Liang, X.; Wang, S.; Yao, K.; Hu, Y.; Zhu, Y.; Chen, Q.; Zhou, W.; Li, Y.; Yao, Y.; Zhang, J.; Peng, L.-Nano Lett.; (Letter); 2007; 7(12); 3603-3607

Electrical contact: Role of metals

The Role of Metal-Nanotube Contact in the Performance of Carbon Nanotube Field-Effect Transi Chen, Z.; Appenzeller, J.; Knoch, J.; Lin, Y.-M.; Avouris, Ph. Nano Lett.; (Letter); 2005; 5(7); 1497-1502.

N-type, p-type, SB FET

X. Peng, N. Komatsu, S. Bhattacharya, T. Shimawaki, S. Aonuma, T. Kimura and A. Osuka, "Optically Active Single-Walled Carbon Nanotubes", Nature, 2, 361-365, (2007).

5

A. Javey, J. Guo, Q. Wang, M. Lundstrom and H. J. Dai, "Ballistic Carbon Nanotube Field-Effect Transistors", 10^{-*} Pd contacts 0.0 Ti contacts 10⁻⁶ 0.2 Schottky 0.4 10⁻⁷ € 10* Barrier 10⁻⁹ 0.6 10⁻¹⁰ 0.8 P 10⁻¹¹ 1.5 2.0 d (nm) 1.0 10⁻¹² 1.0 1.2 Diameter (nm) 0.6 0.8 1.4

(c)

Z. Chen, J. Appenzeller, J. Knoch, Y.-M. Lin and P. Avouris, "The Role of Metal-Nanotube Contact in the Performance of Carbon Nanotube Field-Effect Transistors", Nano Lett., 5, 1497-1502, (2005).

Effect of parasitics

P. J. Burke, "AC Performance of Nanoelectronics: Towards a Ballistic THz Nanotube Transistor", Solid State Electronics,

Nanotube density

Dense arrays on quartz

What is length, diameter, chiral \bigcirc

mountly density of each tube

L. Ding, D. Yuan and J. Liu, "Growth of High-Density Parallel Arrays of Long Single-Walled Carbon Nanotubes on Quartz Substrates", J. Am. Chem. Soc., 130, 5428-5429, (2008).

C. Kocabas, S. H. Hur, A. Gaur, M. A. Meitl, M. Shim and J. A. Rogers, "Guided Growth of Large-Scale, Horizontally Aligned Arrays of Single-Walled Carbon Nanotubes and Their Use in Thin-Film Transistors", Small, 1, 1110-1116, (2005).

S. Han, X. Liu and C. Zhou, "Template-Free Directional Growth of Single-Walled Carbon Nanotubes on a- and R-Plane Sapphire", J. Am. Chem. Soc., 127, 5294-5295, (2005).

Z. Chongwu, L. Xiaolei, H. Song and I. Fumiaki, "A Nanotube-on-Insulator (Noi) Approach toward Scalable and Integratable Nanotube Devices on Sapphire", in Solid-State and Integrated Circuit Technology, 2006. ICSICT '06. 8th International Conference on. 2006. p. 1065-1067. W. Zhou, C. Rutherglen and P. Burke, "Wafer Scale Synthesis of Dense Aligned Arrays of Swnts", Nano Research, 1, 158-165, (2008).

H. Ago, K. Imamoto, N. Ishigami, R. Ohdo, K. Ikeda and M. Tsuji, "Competition and Cooperation between Lattice-**Oriented Growth and Step-Templated Growth of Aligned** Carbon Nanotubes on Sapphire", Applied Physics Letters,

200Gin

burkegroup 1.0kV 13.2mm x250 3/5/08

 \bigcirc

Raman

o Other techniques

80

60

50

40 30 4 µm

20 5 µm 10

2 µm

3 µm

2 3 L (um)

-1 Va (V)

Alignment: Status & Goals

Property/Parameter	Target Value or Range	Justification
Diameter	1.5 – 2.0 nm	 Current is largest in this range^{107,108}.
Chirality	semiconducting & same (n,m)	•To obtain identical transport properties.
Purity	>99%	 No metallics for high gain and f_{Max}
Length	$> 1 \ \mu m$	•SWNT length must be longer than the intended electrode gap channel length.
Density	>10 SWNT/µm	 Reduces parasitic capacitance, increases current carrying capacity, and improves impedance matching.
Alignment	All parallel	 Result in higher transconductance, and denser SWNT packing
Uniformity	Wafer scale	 Essential for large scale processing.

C. Rutherglen, D. Jain and P. Burke, "Nanotube Electronics for RF Applications", *Nature Nanotechnology*, in press, (**2009**).

Mobilities

C. Rutherglen, D. Jain and P. Burke, "Nanotube Electronics for Radiofrequency Applications", *Nature Nanotechnology*, **4**, **811-819**, **(2009)**.

1/4/2016

(n,m) enrichment

Comparison to other semiconductors

C. Rutherglen, D. Jain and P. Burke, "Nanotube Electronics for RF Applications", *Nature Nanotechnology*, in press, (**2009**).