EECS277C Winter 2017
2/23/2017 3:30 to 4:50 pm Professor Peter Burke
[50 pts] Coulomb blockadediagram for small source-draw the bond discourse of the state of the st

Midterm #1	Name:	
	ID no.:	

5. [50 pts] Coulomb blockade. Consider the two-island circuit with two gates. Draw the band diagram for small source-drain voltage at V_{g1} =, V_{g2} =0. Is current flowing under this condition? dependent) in order to allow current to flow from source to drain at small source-drain bias voltages. How much current flows and how does this depend on the waveform of the gate voltages and the source drain bias voltage?

EECS277C Winter 2017
2/23/2017 3:30 to 4:50 pm

Professor Peter Burke

(1. 18NC Midterm #1

Name:	101	ano	')	
ID no.:				

1	2	3	4	5	Total		
/15	/10	/10	/10	145	/100		

Helpful constants for you:

 $c = 3 \cdot 10^8 \,\text{m/s}$ $e = 1.6 \ 10^{-19} \ coulombs$ $h = 6.63 \ 10^{-34} \ J-s$ $m = 9.1 \cdot 10^{-31} \text{ kg}$ $k_B = 1.38 \ 10^{-23} \ J/K$ $h/e^2=25 k\Box$

1.	[15	pts.	For	a single	tunnel	junction,	list the	3	requirements	to	observe	Coulomb	blockade
----	-----	------	-----	----------	--------	-----------	----------	---	--------------	----	---------	---------	----------

Requirement #1 KT < CZ/ leef # 5 Pollo Requirement #2 RTD We 2 Requirement #3 Zws > RT up to W ~ RC

2. [15 pts.] For a double tunnel junction, list the 2 requirements to observe Coulomb blockade:

Requirement # 1 Requirement # 2

3. [10 pts] Consider a MOS capacitor with k=10, W=0.1 micron, L=0.1 micron, d=10 nm. What is the temperature at which Coulomb blockade would be observed?
$$-|2+1-7-7+8|$$

$$C = \underbrace{A}_{N} = \underbrace{8.85 \times 10^{-12}}_{N} \underbrace{A}_{N} = \underbrace{8.85 \times 10^{-12}}_{N} F$$

4. [10 pts] What is the L and W required for room temperature Coulomb blockade effect to be

observed for the case of problem #3?

$$\frac{C^{2}}{8.85 \times 10^{-17}} = \frac{1.6 \times 1.6}{8.85} \times 10^{-19-19+17} = 0.29 \times 10^{-19}$$

$$\frac{KT}{8.85 \times 10^{-17}} = \frac{1.6 \times 1.6}{8.85} \times 10^{-19-19+17} = 0.29 \times 10^{-19}$$

$$\frac{KT}{8.95 \times 10^{-19}} = \frac{4.11}{8.95} = \frac{4.11}{8.95} = \frac{1.11}{1.15} = \frac{3.00}{1.15} = \frac{1.11}{1.15} = \frac{1$$

Need A 14x small => L, w Ty smaller

Printed on 2/23/2017 2:57 PM