HW1 Problem 4; EECS 277C Nanotechnology

2 dimensions

$N_{k} d k=?$
 Volume of circular shell
 $=2 \pi \mathrm{kdk} / 4$

4 is for upper right quadrant
Number of states in area= area x States/area

$$
\text { States/area }=1 /(\pi / \mathrm{L})^{2}:
$$

$$
N_{k} d k=(2 \pi k d k / 4) \cdot\left(\frac{1}{(\pi / L)^{2}}\right) \cdot 2=L^{2} \frac{k d k}{\pi}
$$

$$
\rho_{k} d k \equiv \frac{N_{k} d k}{\text { area }}=\frac{k d k}{\pi}
$$

HW1 Problem 4; EECS 277C Nanotechnology

2 dimensions
 $\rho(E) d E=$?

We use:

$$
\rho_{k} d k=\rho(E) d E
$$

$$
E=\frac{\hbar^{2} k^{2}}{2 m} \Rightarrow k=\sqrt{\frac{2 m E}{\hbar^{2}}} \Rightarrow d k=\sqrt{\frac{2 m}{\hbar^{2}}} \frac{d E}{2 \sqrt{E}}
$$

$$
\rho(E) d E=\frac{m}{\pi \hbar^{2}} d E
$$

$$
\begin{aligned}
& \text { D } E=\frac{n^{2}}{2 n}\left(\frac{\pi}{2}\right)^{2} n x^{2}+1 t^{2}+1 x^{2} \\
& \Delta E=\frac{x^{2}}{2 m}\left(\frac{\pi}{4}\right)^{2}\left[\left(1^{3}++^{2}\right)-\left(2^{2}+1^{2}+1^{2}\right)\right] \\
& =\frac{W^{2}}{2 m}\left(\frac{\pi}{L}\right)^{2} 3 \\
& h^{2}=6 \times 10^{-34} J-5 \quad k=1.38 \times 10^{-23} \frac{3}{k} \\
& =4.1 \times 10^{-15} \mathrm{eV}-\mathrm{s} \\
& h=10^{-34} J-5 \\
& n=9+10^{-31} \mathrm{~kg} \\
& =6.5 \times 10^{-16} \mathrm{ev}-\mathrm{s} \\
& \Delta E=\frac{\left(10^{-34} J-5\right)^{2}}{29110^{-31} \mathrm{~kg}}\left(\frac{t}{1 m}\right)^{2} 3= \\
& =16 \times 10^{37} \mathrm{~J}=10^{-18} \mathrm{eV} \\
& \text { (um) } \Delta E-10^{-6} e V=\text { 法 } 10 e \mathrm{~V} \\
& \text { : Inm } \Delta F=10^{-0} e V=1 e \mathrm{~V} \\
& (18, \Delta s=\text { cese wev } \\
& r T=26 \text { meV } 1 \text { T }=300 \mathrm{~m} \\
& 1 m
\end{aligned}
$$

EECS 277C Nanotechnology HW \#2

1. Find the relationship between the Fermi energy and the average energy of electrons in a box.
2. Same for the average wavelength.
3. Find the Fermi wavelength of electrons in a typical metal, e.g, Cu .
1) $\langle E\rangle=\frac{1}{N} \int_{0}^{\infty} F(E) E N(E) d E$
$F(E)$ is apps. Step function.

$$
\begin{align*}
& \cong \frac{1}{N} \int_{0}^{E_{F}} E N(E) d F \\
& N(E)=\frac{1^{3}}{2 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} E^{1 / 2} \\
& \langle E\rangle
\end{aligned} \begin{aligned}
& N \frac{1}{N} \frac{\hbar^{3}}{2 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} \int_{0}^{E_{F}} E^{3 / 2} d E \\
&=\frac{1}{N} \frac{L^{3}}{2 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} \frac{2}{3} E_{F}^{5 / 2}(\theta(*) \\
& \text { Recall } E F=\frac{\hbar^{2}}{2 m}\left(3 \pi^{2} \frac{N}{L^{3}}\right)^{2 / 3} \tag{x}
\end{align*}
$$

Combining $\#, *$ yields

$$
\langle E\rangle=\frac{3}{5} E_{F}
$$

2)

$$
\begin{aligned}
& \langle\lambda\rangle=\frac{1}{N} \int_{0}^{\infty} \lambda F(E) N(E) d E \\
& \cong \frac{1}{N} \int_{0}^{E_{F}} \lambda N(E) d E \quad E=\frac{\hbar^{2} k^{2}}{2 m}=\frac{\hbar^{2}}{2 m}\left(\frac{2 \pi}{\lambda}\right)^{2} \\
& =\frac{1}{N} \sqrt{\frac{\hbar^{2}}{2 m}} 2 \pi \int_{0}^{\frac{1}{\sqrt{E}}} N(E) d E \\
& =
\end{aligned}
$$

$=\frac{1}{N} \sqrt{\frac{\hbar^{2}}{2 m}} 2 \pi \frac{L^{3}}{2 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} \int_{0}^{E F} \frac{1}{\sqrt{E}} \sqrt{E} d E$
$=\frac{1}{N} \sqrt{\frac{\hbar^{2}}{2 m}} \hbar \pi \frac{L^{3}}{\lambda \pi^{x}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} E_{F}$
$=\frac{L^{3}}{N} \frac{1}{\pi}\left(\frac{2 m}{\hbar^{2}}\right) E_{F}$
$=\frac{\frac{1}{\pi^{\hbar}} \frac{2 m}{\hbar^{2}} E_{F}}{E_{F}^{3 / 2} \frac{1}{2 \pi}+\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2}}=3 \pi E_{F}^{-1 / 2}\left(\frac{2 m}{\hbar^{2}}\right)^{-1 / 2}=\langle\lambda\rangle$
If we define λ_{F} as $\sqrt{\frac{2 M E_{F}}{\hbar^{2}}}$ wee set

$$
\langle\lambda\rangle=\lambda_{F} \times \frac{3}{2}
$$

3)

$$
E_{F}=\frac{\hbar^{2}}{2 m}\left(3 \pi^{2} \frac{N}{L^{3}}\right)^{2 / 3}
$$

For copper, electron density $=1$ atom
Using atom /m m^{3} for copper, we lind

$$
n=\frac{N}{L^{3}}=8.5 \times 10^{28} \frac{\text { electrons }}{m^{3}}
$$

$$
\text { Using }(\theta) E_{E} \cong 7 \mathrm{eV}
$$

HW1 Problem 6; EECS 277C Nanotechnology Transmission prob:

$$
T=\left[1+\frac{V_{0}^{2} \sinh ^{2}[k a]}{4 E\left(V_{0}-E\right)}\right]^{-1}
$$

$$
k=\sqrt{2 m\left(V_{0}-E\right) / \hbar^{2}}
$$

$$
V_{0}=10 \mathrm{eV}
$$

$$
E=5 \mathrm{eV}
$$

$$
T=1.510^{-10}
$$

$$
\begin{aligned}
& \quad L \lambda=d \sin \theta \\
& \Rightarrow \lambda=\lim ^{\circ} \sin 40^{\circ} \approx 0.7 \mu m \\
& U=1 \mu m \quad\left(10^{3} \text { lines }(m m)\right. \\
& \text { Not inch! }
\end{aligned}
$$

$$
\begin{aligned}
& \quad 10 \text { key } \Rightarrow \sqrt{\frac{150}{10^{4}}} A=0.12 A \\
& \lambda_{\alpha B}=0 \\
& \sin \theta=\frac{\lambda}{Q}=\frac{0.12 A}{1 \mu \mathrm{~m}}=10^{-4}
\end{aligned}
$$

$\Rightarrow \theta \approx 1 c^{-4}$ radians for small e

$$
\approx 0.006^{\circ}
$$

