Nanotechnology

- Nanofabrication techniques
- Characterization techniques
- Single electron transistors
- Quantization of electrical resistance
- Nanotubes, nanowires

Units

- Meter (m)
- Millimeter $(\mathrm{mm})=10^{-3} \mathrm{~m}$
- Micrometer $(\mu \mathrm{m})=10^{-6} \mathrm{~m}$
- Nanometer $(\mathrm{nm})=10^{-9} \mathrm{~m}$
- Picometer $(\mathrm{pm})=10^{-12} \mathrm{~m}$
- Femtometer $(\mathrm{fm})=10^{-15} \mathrm{~m}$

What is nanotechnology?

- "Top down" approach
- Micron scale lithography
- optical, ultra-violet
- Focused Ion Beam
- 10-100 nm
- Electron-beam lithography
- "Bottom up" approach
- Chemical self-assembly
- Man-made synthesis (e.g. carbon nanotubes)
- Biological synthesis (DNA, proteins)
- Manipulation of individual atoms
- Atomic Force Microscopy
- Scanning Tunneling microscopy

A brief history of nanotechnology

- Democritus in ancient Greece: concept of atom
- Rutherford, 1900: discovery of atomic nucleus
- Feynman, 1960: speech at Caltech
- Drexler, 1986, 1992: Engines of Creation, Nanosystems
- Clinton, speech, Caltech, 2000
- National Nanotechnology Initiative since 2000

Feynman challenges

"There's Plenty of Room at the Bottepter Feynman, Caltech 1960 set two challenges

- Construct a $1 / 64$ cubic inch motor
- claimed in 1960
- On display at Caltech today
- Encyclopedia Britanica on head of a pin
- Actualy on page in 10 microns 2
- Claimed in 1985
- Used electron-beam lithography

Foresight challenges

- Drexler wrote two books:
- 1986: Engines of Creation: The Coming Era of Nanotechnology
- 1992: Nanosystems: Molecular Machinary, Manufacturing, and Computation
- Foresight/Feynman \$250,000 prize
- 100 nm arm nano-robot
- $50 \mathrm{~nm}^{3} 8$-bit adder

Biosystems

DNA

- 2-3 nm per base pair
- Human genome contains $\sim 10^{9}$ base pairs

Proteins

- typically 1-10 nm in size
- ~100,000 different proteins in human genetic code
- all are synthesized enzymatically (bottom up)
- Biological Nano-motors
- ATP synthase
- Kinesin, Actin important for muscle movement
- Nanotechnology is important for life itself

ATP Synthase

 10 nm nanomachine at the mitochondria membrane- Uses proton gradient to convert ADP to ATP
- Extremely important for metabolism

10 nm

Movie source: www.res.titech.ac.jp

References: Boyer, Annu. Rev. Biochem. 1997
Yoshida, Nature Rev. Mol. Cell Bio. 1997
Soong, Montemagno, Nature, 2000

Nano-manufacturing

- Lithography can do 10 nm
- Tricks to 2 nm
- Biosystems can add 2 carbon atoms at a time
- typical in lipid biosynthesis
- enzymes are nano machines
- We do not know how to design enzymes, only copy them
- As such, nanotechnology does not yet exist according to Drexler's definition

Readings this lecture covers

- Ferry, pp. 1-5
- Feynman, "There's plenty of room at the bottom"
- Moore's law original paper
- Moore's law slides
- Drexler ch. 2
- Hanson p. 1-14

Course themes

- Nano-electronics: Wave/particle duality
- Particle:
- Charging energy $e^{2 / C}$ (single electron transistor)
- Wave:
- Gradually reduced dimensions:
- 3 (bulk)
- 2 (2DEG)
- 1 (nanowire)
- 0 (quantum dot).
- Quantization of electrical resistance: $e^{2 / h}$

