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Quantum mechanics of free electrons

 Important for quantized resistance 
calculation

 Important for single electron transistors
 Density of states

 3 dimensions
 2 dimensions
 1 dimensions
 0 dimensions

 Dimensionality (effective)
 Set by size of nano-device compared to 

electron wavelength
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Readings for this lecture
 Ferry, Quantum Mechanics for 

Electrical Engineering, ch. 1 (in 
handout packet)

 Hanson p. 16-44,62-69,85-
101,chapter 8

 Good references:
 Brandsen and Joachian, Introduction to 

Quantum Mechanics, Longman 
Scientific, 1989

 Kittel, Introduction to Solid State 
Physics, Wiley, 1996

 Ashcroft/Mermin, Solid State Physics, 
Saunders College, 1976



1/7/2017 EECS 217C Nanotechnology © 2017 P. Burke Lecture 3, p. 3

Quantum mechanics of free particles

2( , )r tΨ


is probability of finding an electron at point r at time t.

Ψ is complex, and both real and imaginary parts are physical.
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Quantum mechanics of free particles:

2( , )r tΨ


is probability of finding an electron at point r at time t.

( )( , ) ~ i k r tr t e ω⋅ −Ψ
 

For a free particle:

p k=



2 2( )

2 2
p kE
m m

= =


Momentum: Energy:

/E=ω
Ψ is complex, and both real and imaginary parts are physical.
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Schrodinger equation:

2 2

2( , ) ( , )
2

i x t x t
t m x
∂ ∂
Ψ = − Ψ

∂ ∂




( )( , ) i kx tx t A e ω−Ψ = ⋅

( ) ( , )i kx tE A e E x tω−= ⋅ ⋅ = ⋅Ψ

Then

Let

( ) ( ) ( )
2 2 2 2 2

2( ) ( )
2 2( , )

2 2 2
i kx t i kx tx t A e ik A e

m x m x m
ω ω− − ∂ ∂

− Ψ = − ⋅ = − ⋅ ∂ ∂  

  

( ) ( )( , ) ( )i kx t i kx ti r t i A e i i A e
t t

ω ωω− −∂ ∂
Ψ = ⋅ = − ⋅

∂ ∂


  

( )
2 2 2

( ) ( , )
2 2

i kx tk pA e x t
m m

ω−= ⋅ = Ψ


(Time dependent)

A is a (complex) constant.

(1 dimension)
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Schrodinger equation:

2 2 2 2 2
2

2 2 2( , ) ( , ) ( , )
2 2

i r t r t r t
t m m x y z

 ∂ ∂ ∂ ∂
Ψ = − ∇ Ψ = − + + Ψ ∂ ∂ ∂ ∂ 

    


( )( )( )( , ) x y zi k x k y k z ti k r tr t A e A e ωω ⋅ + ⋅ + ⋅ −⋅ −Ψ = ⋅ = ⋅
 

Then

Let

( )
2 2 2 2 2 2 2 2

( )
2 2 2 2 2 2( , )

2 2
i k r tr t A e

m x y z m x y z
ω⋅ −   ∂ ∂ ∂ ∂ ∂ ∂

− + + Ψ = − + + ⋅   ∂ ∂ ∂ ∂ ∂ ∂   

   

( , ) ( ) ( , ) ( , )i r t i i r t E r t
t

ω∂
Ψ = − Ψ = ⋅Ψ

∂
  

 

( )
2 2 2

( ) ( , )
2 2

i k r tk pA e r t
m m

ω⋅ −= ⋅ = Ψ
  

(3 dimensions)

as before.

But:

( ) ( ) ( )( ) ( )
2 2 2 22 22 2 ( ) ( )

( , )
2 2

x y zi k r t
x y z

k k k
ik ik ik A e r t

m m
ω⋅ −  + + 

= − + + ⋅ = Ψ  
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Quantum mechanics of free particles:

( )( , ) ~ i k r tr t e ω⋅ −Ψ
 

( ) ( )( , ) ( )n ni k x t i kx t
n

n
r t A e dkA k eω ω− −Ψ = →∑ ∫


Generally,

is also a possibility.
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Time-independent Schrodinger equation
( )( , ) i k r tr t A e ω⋅ −Ψ = ⋅
 

( )( ) ( )x y z x y zi k x k y k z t i k x k y k z i tA e A e eω ω⋅ + ⋅ + ⋅ − ⋅ + ⋅ + ⋅ −= ⋅ = ⋅ ⋅

( )rψ 
Call this

( , ) ( ) i tr t r e ωψ −⇒ Ψ = ⋅
 

2
2( , ) ( , )

2
i r t r t

t m
∂
Ψ = − ∇ Ψ

∂

  


( )
2 2

2 2( , ) ( ) ( ) ( ) ( , ) ( )
2 2

i t i t i t i ti r t i r e i i r e E r e r t r e
t t m m

ω ω ω ωψ ω ψ ψ ψ− − − −∂ ∂
Ψ = ⋅ = − ⋅ = ⋅ ⋅ = − ∇ Ψ = − ∇ ⋅

∂ ∂

        
  

From:

2
2 ( ) ( )

2
r E r

m
ψ ψ⇒ − ∇ = ⋅
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L

L

L

Goal: find ( )rψ 

Similar to electric field inside the box.

Confined particles: A box
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L

L
L

z
∧

y
∧

x
∧

Goal: find

Everywhere outside the box

In particular, 

0)( 2 =rψ

on the boundaries.

As before, we will consider all six surfaces:

( )rψ 

0)( 2 =rψ
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L

L
L

( )( ) x y zi k x k y k zr A eψ ⋅ + ⋅ + ⋅= ⋅


The plane x=0:

Does not solve boundary condition!!!

( ) ( )( 0, , ) x y z y zi k x k y k z i k y k zx y z A e A eψ ⋅ + ⋅ + ⋅ ⋅ + ⋅= = ⋅ = ⋅0

Try:

Boundary conditions:

z
∧

y
∧

x
∧
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L

L
L

( )( ) x y zi k x k y k zr A eψ ⋅ + ⋅ + ⋅= ⋅


∧

z
∧

y
∧

x

The plane x=0:

Does solve boundary condition!!!

( )x y zi k x k y k zA e − ⋅ + ⋅ + ⋅− ⋅

( ) ( )( ) y zx x i k y k zik x ik xr A e e eψ ⋅ + ⋅⋅ − ⋅= ⋅ − ⋅


( ) ( )( 0, , ) y zx x i k y k zik x ik xx y z A e e eψ ⋅ + ⋅⋅ − ⋅= = ⋅ − ⋅0 0

a b a be e e⋅ = ⋅

( ) ( )0 0 0y zi k y k zA e e e ⋅ + ⋅= ⋅ − ⋅ =

Let’s try something:

y
∧

Boundary conditions:



1/7/2017 EECS 217C Nanotechnology © 2017 P. Burke Lecture 3, p. 13

L

L
L

∧

z
∧

y
∧

x

The plane x=L:

( ) ( )( ) y zx x i k y k zik x ik xr A e e eψ ⋅ + ⋅⋅ − ⋅= ⋅ − ⋅


( )2 sin( ) y zi k y k z
xiA k x e ⋅ + ⋅= ⋅ ⋅

( )( , , ) 2 sin( ) 0?y zi k y k z
xx L y z iA k L eψ ⋅ + ⋅= = ⋅ ⋅ =

( )1sin( )
2

i ie e
i

θ θθ −= −

/    1,2,3...nk n L nπ= =

If and only if:

Boundary conditions:
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L

L
L

∧

z
∧

y
∧

x

)sin()sin()sin()2()( 3 zkykxkAir
zynx nn ⋅⋅⋅=

ψ

Lnk xnx
/π=

We can do the same for y, z:

2 2 2 2 2 2
2 2 2

( ) ( / ) ( )
2 2

x y zn n n
x y z

k k k LE n n n
m m

π+ +
= = + +
 

These are the allowed energy levels, or “quantum states”

Lnk yny
/π=
Lnk znz

/π=

y
∧

Boundary conditions:
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L

L
L

∧

z
∧

y
∧

x

2 2
2 2 2( / ) ( )

2 x y z
LE n n n

m
π

= + +


These are the allowed energy levels, 
or “quantum states”

Pauli exclusion principle: Each unique combination of nx, ny, nz can
only have two electrons (spin up, spin down).

y
∧

Many electrons:
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nx=1, ny=1, nz=1

energy

nx=2, ny=1, nz=1 nx=1, ny=2, nz=1 nx=1, ny=1, nz=2

Etc.

Energy spectrum of free particles
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energy

?=dENE
Number of states with energy between E and E + dE

E

E+dE

How many states?

If L is large, states are very close together.
Approximate as a continuum.

?)( =dEEρ
Number of states with energy between E and E + dE per volume.

Density of states
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Easier first to think of in k-space:
Density of states in k-space is uniform:

One state per (π/L)3:

kx

ky

kz

Density of states
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Easier first to think of in k-space:
Density of states in k-space is uniform:

One state per (π/L)3:

From Verdeyen

Density of states
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kx

ky

kz

?=dkNk

Number of states between k, k+dk:

2 2 2
x y zk k k k≡ + +

/
xn xk n Lπ=

/
yn yk n Lπ=

/
zn zk n Lπ=

From Verdeyen

Density of states
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?kN dk =
Volume of spherical shell
=4πk2dk/8
8 is for upper right quadrant

Number of states in volume=
Volume x States/volume
States/volume = 1 / (π/L)3:

( )
2

2 3
3 2

14 /8 2
( / )k

k dkN dk k dk L
L

π
π π

 
= ⋅ ⋅ = 

 
2

2volume
k

k
N dk k dkdkρ

π
≡ =

HW you will do calculation for 2 dimensional world.
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2

2k
k dkdkρ
π

=

?)( =dEEρ

2 2

2 2
2 2

2 2
k mE m dEE k dk
m E

= ⇒ = ⇒ =


 

dEEdkk )(ρρ =
We use:

3/ 2 3/ 2
1/ 2

2 3/ 2
2( ) mE dE E dEρ
π

= ⋅
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energy

At zero temperature, as we add electrons to the
box, we gradually fill up all the states.
(DISCUSS PAULI EXCLUSION PRINCIPLE
-IMPORTANT!)

When we are done filling the box, the energy
of the last electron is called the “Fermi energy.”

“Gas” means we neglect electron-electron interactions.

All these states are filled with electrons.

E=0

E=EFermi

energy

P(
E)

Fermi gas
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energy

All these states are 
filled with electrons.

E=0

E=EFermi

1/ 2 3/ 2
3 1/ 2

E 2 3/ 20 0

2# electrons dEf fE E mN L E dE
π

= = ⋅∫ ∫ 

1/ 2 3/ 2
3 3/ 2

2 3/ 2
2 2# electrons

3 f
mL E

π
=



2 / 32 2 / 3 4 / 3

3
3 # electrons
2fE

m L
π  ⇒ =  

 


In a typical metal, 1 electron /(0.1 nm)3.
Ef ~ 10 eV

Fermi energy
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E=EFermi

energy

P(
E)

P(E) = probability of occupying a state 
with energy E

What about finite temperature?

1

0

Occupation probability
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Recall Boltzmann factor P(ε):

“The probability for a physical system to be in
a state with energy ε is proportional to           .”  / Bk Te ε−

This is actually not quite true. It is classical.
A quantum calculation shows for electrons:

( ) /
1( )

1fE E kTP E
e −=

+
Called Fermi-Dirac distribution function.
Boltzman is high-energy limit (discuss!)

Boltzmann
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E=EFermi

energy

P(
E)

( ) /
1( )

1fE E kTP E
e −=

+

kTP=1/2 at Ef for all temperatures.

1

0

Fermi-Dirac
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