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Lecture 5: Coulomb blockade
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Readings this lecture covers
 Ferry pp. 226-244
 Hanson, pp. 212-244
 Cleland PRL, PRB (reading packet)
 Devoret chapter in Single Charge 

Tunneling (reading packet)
 Grabert chapter (reading packet)
 These chapters are covered all the 

way to (and including) lecture 8
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Charge on capacitor continuous

+ve charge

-ve charge
Q=0

Q+ (Negative charge shifted a little bit to left.)

(Negative charge shifted a little bit to right.)
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Is tunneling allowed?
+ve charge

-ve charge

(Negative charge shifted a little bit to left.)

Q+ Q-
2

2
QE
C

=



1/7/2017 EECS 277C Nanotechnology © 2017 P. Burke Lecture 5, p. 5

Is tunneling allowed?
+ve charge

-ve charge

(Negative charge shifted a little bit to left.)
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Is tunneling allowed?
+ve charge

-ve charge

e-

(Negative charge shifted a little bit to left.)
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After electron tunnels:
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Coulomb gap
+ve charge

-ve charge
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Tunneling only under these conditions, otherwise no tunneling!
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I-V curve
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Slope at high V
is what we calculated 

last lecture.
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Temperature
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Criteria to observe coulomb gap behavior:



1/7/2017 EECS 277C Nanotechnology © 2017 P. Burke Lecture 5, p. 10

I-V curve vs. temperature
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Numbers
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Class demo:
1 nm barrier, 1 mm x 1 mm junction:

Practically impossible.

Best lithographic junction:
1 nm barrier, 100 nm x 100 nm junction:

1510 1C F T K−≈ ⇒ <
Possible to achieve in the lab.
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Quantum mechanics

 For strong tunneling, 
electron can have a 
large probability to be 
on both sides at the 
same time.

 This means the system 
energy cannot be 
defined by localizing 
the electron on only 
one side.

 This makes coulomb 
blockade irrelevant.
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I-V curve vs. tunnel strength
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Charge on capacitor is a quantum variable
 We don’t always know 

what Q is.
 Treating Q as a 

quantum variable, 
there is a certain 
probability for the 
system to have a 
certain value of Q.

 Should describe a 
“wave function” for Q: 
Ψ(Q) just like wave 
function for position 
Ψ(x)

 Now, we need 
quantum theory of 
electric circuits.

+ve charge

-ve charge

Q=0

Q+ Q-

Q- Q+
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Quantum theory of electric circuits
 At DC, can have current 

bias or voltage bias 
depending on Z(dc) vs. 
RT.

 At AC, almost always 
have Z(ω) < RT because 
of lead capacitance 
(typically pF).

V

Z(ω)

RT
C

Full quantum treatment beyond the scope of this class.

In order to see Coulomb blockage, 
need current bias all the way up to 1/(RKC) which is typically 10 GHz, i.e.:

1( )  for all ~ 10 GHzT
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Z R
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Requirements for Coulomb blockade

kT < e2/C (hard)
RT >  RK (25 kΩ) 
(harder)
Z(ω) > RT at all 
frequencies up to 1/RKC 
(hardest)

Achieved by Cleland PhD thesis, Berkeley 1992.
(Congratulations, Andrew.)
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