Lecture 6: Single electron box
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Electrostatic energy (no tunneling)
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Island charge

Q" Qe FG+ “Island charge”:
| Q =Q-Q
RTC CG + Kirchoff:
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Electrostatic energy (w/tunneling)
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Thermodynamics

S=S(E.\V,N...)

Energy:

E=E(S,V,N,...)

Entropy maximum <> Energy minimum
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Thermodynamic variables

Energy:
E_E(S,V’N’lll)
Temperature: Pressure:

1 OE OE

T B aS V,N,... av E,N,..

1/7/2017 EECS 277C Nanotechnology © 2017 P. Burke



Thermodynamic potentials

E—E(S,V,N,...)

Helmholtz potential (Helmholtz free energy):
Minimized in presence of
— — “reservoir” with temperature T.
Enthalpy:
Minimized in presence of
— —|— “reservoir” with pressure P.

Gibbs free energy:

Minimized in presence of
— — —I— “reservoir” with pressure P,

temperature T.
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Thermodynamic potentials for circuits

Energy:

E=E(S,V,N,Q,...)

Gibbs free energy for electronic circuits:

— Minimized in presence of
— G “reservoir” with voltage V.

electrostatic
energy

need to calculate

Q= how much charge has passed through the battery onto the gate
V= voltage of the battery
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Free energy of single electron box:

G=E-QV

From before;
E:CCGVZ+Qi2 :CG(CV_Qi)
20C+C;) ¢ c+cCy

o _CCV?+Q7  Ce(CV-Q),,
2(C +C.) C+C,
B 1(CLV +Qi)2 1

= —=C.V?
2 C+C, 2

(Note: The last minus sign agrees with Lafarge thesis, but not Ferry textbook.)
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Charge of island

From last slide:

2
6o LCV+Q) 1.
2 C+C, 2

Qi — —Ne  onlyifR, >>R,

- 1(CV —ne)’

G=
2 C+C,

- const
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Charge of island

G - 1(C.V —ne)’

2 C+Cg
A
n=-1 7:0 n=1 n=2
>
eV /C,
>
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Finite temperatures

Need
< e?/(C+Cp)
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Fig. 1.5 b) Solid lines: experimental variations of the average number 7 of excess electrons in

in the island of an electron box. Dashed lines: theoretical calculations for an island
capacitance Cy =0.8 fF. The experimental parameters of the circuit are C, =74 aF and
C. =21 aF. The quantity Q;, denotes the random offset charge in the island.

From Lafarge, PhD thesis, Universite Paris 6 (1993)
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Quantum computing

o A single electron box has been
proposed as a gu-bit

o |JO> or |1>= correspond to n or n+1
electrons

o Difficulty is fast (GHz) readout
before decoherence sets In

o A superconducting box (for Cooper
pairs) could have longer
decoherence
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