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Lecture 6: Single electron box
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Electrostatic energy (no tunneling)
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Island charge
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“Island charge”:

i GQ Q Q= −
Kirchoff:

Solve for Q, QG:
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Electrostatic energy (w/tunneling)

V
RTC CG

Q- Q+ QG
- QG

+

( )G i

G

C C V QQ
C C

+
=

+

( )G i
G

G

C CV QQ
C C

−
=

+

2 2 2 2

2 2 2( )
G G i

G G

Q Q CC V QE
C C C C

+
= + =

+

+

-



1/7/2017 EECS 277C Nanotechnology © 2017 P. Burke Lecture 6, p. 5

Thermodynamics

( , , ,...)S S E V N=
Entropy:

( , , ,...)E E S V N=
Energy:

Entropy maximum   Energy minimum
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Thermodynamic variables

( , , ,...)E E S V N=
Energy:
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Thermodynamic potentials

( , , ,...)E E S V N=
Energy:

H E PV= +
F E TS= −
Helmholtz potential (Helmholtz free energy):

Minimized in presence of 
“reservoir” with temperature T.

Enthalpy:

Minimized in presence of 
“reservoir” with pressure P.

G E TS PV= − +
Gibbs free energy:

Minimized in presence of 
“reservoir” with pressure P, 

temperature T.
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Thermodynamic potentials for circuits

( , , , ,...)E E S V N Q=
Energy:

GG E Q V= −
Gibbs free energy for electronic circuits:

Minimized in presence of 
“reservoir” with voltage V.

electrostatic 
energy need to calculate

Q= how much charge has passed through the battery onto the gate
V= voltage of the battery
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Free energy of single electron box:
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From before:
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(Note: The last minus sign agrees with Lafarge thesis, but not Ferry textbook.)
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Charge of island
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From last slide:

iQ ne= − only if RT >> RK
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Charge of island
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Finite temperatures

From Lafarge, PhD thesis, Universite Paris 6 (1993)

Need 
kT << e2/(C+CG)
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Quantum computing
 A single electron box has been 

proposed as a qu-bit 
 |0>  or |1> correspond to n or n+1 

electrons
 Difficulty is fast (GHz) readout 

before decoherence sets in
 A superconducting box (for Cooper 

pairs) could have longer 
decoherence
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