Lecture 9

2 dimensional electron gas (2DEG)

Readings this lecture covers

Ferry, pp. 23-39Hanson, pp. 118-123

Vacuum level

MBE

4 atom per layer!

(From Streetman, Solid State Electronic Devices)

MBE

Also InP, InGaAs, InAlAs, InGaAsP

Picture adapted from M. Lilly.

EECS 277C Nanotechnology © 2017 P. Burke

Ζ

Heterojunction band diagrams

• Determine $\Delta E_c = \chi_1 - \chi_2$ (Vacuum levels line up) \circ Determine $\Delta E_v = \Delta E_a - \Delta E_c$ • There will be some charge transfer and built-in electric field/voltage as in pn homojunction • Built in voltage $\phi = \phi_1 - \phi_2$ \circ Draw the diagram (You will in HW#2)

Particle in a box:

$$(2i)^{3}A \cdot \sin(k_{n_{x}}x) \cdot \sin(k_{n_{y}}y) \cdot \sin(k_{n_{z}}z)$$

$$k_{n_{x}} = n_{x}\pi / L$$

$$k_{n_{y}} = n_{y}\pi / L$$

$$k_{n_{z}} = n_{z}\pi / L$$

$$E = \frac{\hbar^2 (k_{n_x}^2 + k_{n_y}^2 + k_{n_z}^2)}{2m} = \frac{\hbar^2 (\pi/L)^2}{2m} (n_x^2 + n_y^2 + n_z^2)$$

These are the allowed energy levels, or "quantum states"

Particle in a box

$$E = \frac{\hbar^2 (k_{n_x}^2 + k_{n_y}^2 + k_{n_z}^2)}{2m} = \frac{\hbar^2}{2m} \left[\left(\frac{\pi}{L_x}\right)^2 n_x^2 + \left(\frac{\pi}{L_y}\right)^2 n_y^2 + \left(\frac{\pi}{L_z}\right)^2 n_z^2 \right]$$

These are the allowed energy levels, or "quantum states"

Limit:

Fermi energy in 3 dimensions

energy

electrons =
$$L^3 \frac{2^{1/2} m^{3/2}}{\pi^2 \hbar^{3/2}} \frac{2}{3} E_f^{3/2}$$

$$\Rightarrow E_f = \frac{\hbar^2 3^{2/3} \pi^{4/3}}{2m} \left(\frac{\text{\# electrons}}{L^3}\right)^{2/3}$$

All these states are filled with electrons.

E=E_{Fermi}

E=0

In a typical metal, L ~ 0.1 nm. $E_{\rm f} ~ \sim 10 ~ \rm eV$

Fermi energy in 2 dimensions

Need to evaluate integral numerically, just as in 3d.

All these states are filled with electrons.

E=E_{Fermi}

E=0

1/7/2017

energy

Energy spectrum of free particles

energy

Fermi energy in 2d

electrons = $\int_0^{E_f} N_E dE = \int_0^{E_f} L^2 \frac{m}{\pi \hbar} dE$

electrons =
$$L^2 \frac{m}{\pi \hbar} E_f$$

$$\Rightarrow E_f = \frac{\hbar\pi}{m} \left(\frac{\text{\# electrons}}{L^2}\right)$$

All these states are filled with electrons.

E=E_{Fermi}

E=0

In GaAs, 10^{11} cm⁻² gives $E_f \sim meV$ But 10^{12} cm⁻² gives more than first subband.

Discuss "subband", how above integral gets modified.

energy

Fermi-Dirac

Triangle vs. square well:

(Draw both bound states on board.In particular discuss figure 5.21 from Liu.)Also discuss shallow vs. wide wells on board.(Typically 100 angstroms works.)Discuss setback doping, mobility (time permitting).

Schottky barriers

From Streetman

Schottky barriers

Band diagram

1/7/2017

Changes Fermi energy which changes density.

(Draw better pictures on board.)

From Liu.

n_s vs E_f

After all that mumbo-jumbo, we know it is complicated. We approximate it many times as:

$E_f(n_s) = E_{f,0} + a \cdot n_s$

HEMT:

Tunneling

Resonant tunnel diodes
Draw band diagram, I-V on board
Fast (> 700 GHz)
Optical/IR detectors
Like photoelectric effect
Quantum cascade lasers
Levels within quantum wells lase