EECS/CSE 70A Spring 2018 Midterm Exam #2	Name:
May 25th, 2018, 12:00 pm to 12:50 pm	ID no.:
Professor Peter Burke	

PROBLEM 1: (10 points)

Find Ceq:

Ceq 6MF

EECS/CSE 70A Spring 2018 Midterm Exam #2	Name:
May 25th, 2018, 12:00 pm to 12:50 pm	ID no.:
Professor Peter Burke	5

PROBLEM 2: (20 points)

The voltage of the capacitor is given as a function of time in the following figure between 0ms to 8ms. Plot the current of the capacitor, $i_C(t)$, between 0ms to 8ms. Mark the axes of your plot with numbers and units.

Page 3 of 6.

PROBLEM 4: (20 points)

a) Given $i(t) = 5 \cos(\omega t + \pi/6)$ amps. Find the phasor I that represents i(t) (express your answer for I in rectangular/cartesian form x + jy)

$$T = 5 / \frac{\pi}{6}$$

$$2 \times = r \cos 0 = 5 \cos(\pi/6) = 5 / \frac{3}{2} / \frac{3}{2}$$

$$2 \times = r \sin 0 = 5 \sin(\pi/6) = \frac{5}{2} / \frac{3}{2}$$

$$[2]$$
 $I = \frac{5\sqrt{3}}{2} + j = \frac{5}{2}$

b) Convert the phasor $V = 1 + j\sqrt{3}$ to time domain expression v(t). (express the angle in <u>radians</u> not degrees)

$$(1) r = \sqrt{x^2 + y^2} = \sqrt{1 + 3} = \sqrt{4} = 2$$

$$(1) O = \tan^{-1}(\frac{y}{x}) = \tan^{-1}(\sqrt{13}) = \pi/3$$

$$V(t) = 2 \cos(\omega t + \pi/3)$$

Each fully correct part: [Z] points

Each part with any mistake: zero

EECS/CSE 70A Spring 2018 Midterm Exam #2

Name:

May 25th, 2018, 12:00 pm to 12:50 pm **Professor Peter Burke**

ID no.:

PROBLEM 5: (20 points)

Find V, I, and i(t) if $\mathbf{Z} = 10 e^{j\pi/4} \Omega$.

(express your answers for V and I in polar form $re^{j\theta}$)

(express all angles in **radians** not degrees)

$$\frac{1}{\sqrt{5}} = \frac{10e^{j\pi/3}}{\sqrt{5}} = \frac{10e^{j\pi/3}}{\sqrt{5}} = \frac{10e^{j\pi/4}}{\sqrt{5}} = \frac{10e^$$

i(t) = cos(20t + 11/12) A

Each fully correct part: [5] points

Each part with any mistake: zero

H 20.		
[5]	V	10 e 1 T/3 V
(5)	I	e57/12 A
[5]	i(t)	Cos (20t+11/12)A