EECS/CSE 70A Spring 2018 Midterm Exam \#2
May $25^{\text {th }}, 2018,12: 00 \mathrm{pm}$ to $12: 50 \mathrm{pm}$
Professor Peter Burke

Name:
ID no.: \qquad

PROBLEM 1: (10 points)
Find C_{eq} :

$$
\begin{equation*}
C_{2}=6 \mu \mathrm{~F} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
C_{e_{1}} \text { and } C_{3} \text { Parrallel } \rightarrow C_{e 2}=C_{e 1}+C_{3}=6 \mu \mathrm{~F} \tag{2}
\end{equation*}
$$

C_{5} and C_{6} Parallel $\rightarrow C_{e 3}=C_{5}+C_{6}=6 \mu \mathrm{~F}$ (2)
$C_{e 2}$ and $C_{e 3}$ series $\rightarrow C_{e 4}=\frac{C_{e 2} \times C_{e 3}}{C_{e_{2}}+C_{e 3}}=3 \mu \mathrm{~F}$
$c_{e 4}$ and c_{4} Parrallel $\rightarrow c_{e_{q}}=c_{e_{4}}+c_{4}=6 \mu F=2$

$\mathrm{C}_{\text {eq }}$	$6 \mu \mathrm{~F}$

\qquad
May $25^{\text {th }}, 2018,12: 00 \mathrm{pm}$ to $12: 50 \mathrm{pm}$
ID no.: \qquad
Professor Peter Burke

PROBLEM 2: (20 points)

The voltage of the capacitor is given as a function of time in the following figure between 0 ms to 8 ms . Plot the current of the capacitor, $\mathrm{i}_{\mathrm{c}}(\mathrm{t})$, between 0 ms to 8 ms . Mark the axes of your plot with numbers and units.

$$
q=C V_{c} \rightarrow i_{c}(t)=C \frac{d V_{c}}{d t}(1)
$$ $10^{-3}\left\langle t<2 \times 10^{-3} \rightarrow i_{c}(t)=0\right.$ (4)

$340^{-3}<t<3 \times 10^{-3} \rightarrow i c(t)=5 \times 10^{-6} \times \frac{-2}{10^{-3}}=-10 \mathrm{~mA}$ (4)
$3 \times 10^{-3}<t<4 \times 10^{-4} \rightarrow i c(t)=0$ (4)
This repeats again from $t= \pm \times 10^{-3}$ to $t=8 \times 10^{-3}$.

Page 3 of 6 .

\qquad
May $25^{\text {th }}, 2018,12: 00 \mathrm{pm}$ to $12: 50 \mathrm{pm}$
ID no.: \qquad
Professor Peter Burke
PROBLEM 4: (20 points)
a) Given $i(t)=5 \cos (\omega t+\pi / 6)$ amps. Find the phasor I that represents $i(t)$ (express your answer for \mathbf{I} in rectangular/cartesian form $\mathrm{x}+\mathrm{jy}$)

$$
\begin{equation*}
\bar{I}=5 \angle \pi / 6 \tag{2}
\end{equation*}
$$

(2) $x=r \cos \theta=5 \cos (\pi / 6)=5 \frac{\sqrt{3}}{2}$
(2) $y=r \sin \theta=5 \sin (\pi / 6)=\frac{5}{2}$

b) Convert the phasor $\mathbf{V}=1+\mathrm{j} \sqrt{3}$ to time domain expression $v(t)$. (express the angle in radians not degrees)

$$
\begin{aligned}
& \text { (v) } r=\sqrt{x^{2}+y^{2}}=\sqrt{1+3}=\sqrt{4}=2^{[2} \\
& \langle\vartheta\rangle=\tan ^{-1}\left(\frac{y}{x}\right)=\tan ^{-1}(\sqrt{3})=\pi / 3 \\
& V(t)=2 \cos (\omega t+\pi / 3)
\end{aligned}
$$

Each fully correct part: 2 points
Each part with any mistake: zero
\qquad
May $25^{\text {th }}, 2018,12: 00 \mathrm{pm}$ to $12: 50 \mathrm{pm}$
ID no.: \qquad
Professor Peter Burke
PROBLEM 5: (20 points)
Find \mathbf{V}, \mathbf{I}, and $\mathrm{i}(\mathrm{t})$ if $\mathbf{Z}=10 e^{j \pi / 4} \Omega$.
(express your answers for \mathbf{V} and \mathbf{I} in polar form $\mathrm{re}^{j \theta}$) (express all angles in radians not degrees)

$$
\begin{aligned}
& v_{s}(t)=10 \cos (20 t+\pi / 3) \text { volts } \\
& \overline{V_{s}}=10 e^{j \pi / 3} \mathrm{~V} \\
& \bar{I}=\frac{\bar{V}_{s}}{\bar{Z}}=\frac{10 e^{j \pi / 3}}{10 e^{j \pi / 4}}=e^{j \pi / 2} \mathrm{~A} \\
& i(t)=\cos (20 t+\pi / 12) \mathrm{A}
\end{aligned}
$$

Each fully correct part: 5 points
Each part with any mistake: zero

5	\mathbf{V}	$10 e^{j \pi / 3}$	V
(5)	\mathbf{I}	$e^{j \pi / 12}$	A
5	$\mathbf{i}(\mathrm{t})$	$\cos (20 t+\pi / 12) A$	

Page 6 of 6 .

