\qquad
\qquad

Q1	Q2	Q3	Q4	Q5	Total
$/ 10$	$/ 10$	$/ 40$	$/ 30$	$/ 10$	$/ 100$

EECS / CSE 70A Midterm Exam \#1

DO NOT BEGIN THE EXAM UNTIL YOU ARE TOLD TO DO SO.

Print your name on all pages.

Write your solutions in clear steps with concise explanations.
\qquad
\qquad

PROBLEM 1: (10 points) BITCOIN MINING

What is the hourly profit or loss if you spend money only on electricity with the Antminer S 9 to mine bitcoin? Show your work!

Hourly income (mining) $=\phi$ \qquad
Hourly cost (electricity) $=\dot{\phi} \quad 22.1$
Hourly profit/loss (circle profit or loss) $=\varnothing \quad 13.9$

- Hash Rate13TH/s (this is a measure of the number of hash "computations" per second the S 9 can perform). Recall $\mathrm{T}=$ tera $=10^{\wedge} 12$

- Power Consumption 1300W

- Assume Bitcoin Value of $\mathbf{1 0 0 0 0} \mathbf{\$}$

Shown below is the Southern California Edison rate for electricity, current as of 5/1/2018. Assume your household is frugal with electricity usage, so you are in Tier 1.

I will calculate the number of hashes it takes to mine 1 bitcoin for you: The global hash rate (the combined computational capability of all active mining computers in the world) as of 5/1/2018 is $28,791,021,184 \mathrm{GH} / \mathrm{s}$. \# hashes to mine 1 bitcoin = global hash rate times ten minutes $/ 25=$ $\left(28,791,021,184^{*} 10^{\wedge} 9 \mathrm{H} / \mathrm{s}\right)^{*}(60 \mathrm{sec} / \mathrm{min}) 10 \mathrm{~min} / 12.5=(2.9 * 6 / 1.25) * 10^{\wedge}(10+9+1+1-1)=$ approx. $1.3^{*} 10^{\wedge} 21$.
So: $1.3^{*} 10^{\wedge} 21$ hashes earns one bitcoin. Use this to determine how many bitcoins per second the Antminer 59 mines, based on its hash rate of $13 \mathrm{TH} / \mathrm{s}$. ($\mathrm{H}=$ hash $\mathrm{T}=\mathrm{Tera}$)

The electricity cost should be calculated based on the Antminer $\$ 9$ power consumption of 1300 W.
\qquad
May $2^{\text {nd }}, 2018,12: 00 \mathrm{pm}$ to $12: 50 \mathrm{pm}$
ID no.: \qquad

PROBLEM 1:

Hourly income:
Antminer Processing speed $=13 \frac{\mathrm{TH}}{\mathrm{s}}=13 \times 10^{12} \frac{\mathrm{H}}{\mathrm{s}}$

$$
1 \text { bitcoin }=1.3 \times 10^{21} \mathrm{H}
$$

$$
\text { Antminer bitcoin earning rate }=\frac{13 \times 10^{12}}{1.3 \times 10^{21}} \frac{b_{i}+c_{0 i n}}{5}=10^{-8} \frac{b_{i}+c o i n}{5}
$$

$$
\text { Bitcoin earned per hour }=1_{0}^{-8} \times 60 \times 60=3.6 \times 10^{-5}
$$

Hourly income $=3.6 \times 10^{-5} \times 10^{4} \$=3.6 \times 10^{-5} \times 10^{6} \phi=36 \not \subset$
Hourly Cost

$$
\begin{aligned}
& =1.3 \mathrm{~kW} \times \frac{17 \phi}{\mathrm{kWH}}=22.1 \frac{d}{\text { hour }} \\
& \text { Hourly cost }=22.1 \phi
\end{aligned}
$$

Hourly

$$
P_{\text {rofit }}=364-22.14=13.94
$$

\qquad
ID no.: \qquad
PROBLEM 2: (10 points)
Find $\mathrm{Req}_{\mathrm{eq}}$:

\qquad
ID no.: \qquad

PROBLEM 3: (40 points)
Use nodal analysis to find V_{1} through V_{3} and i_{1} through i_{3} :

a) What is the value of V_{1} (pts)

$$
v_{1}=9 v
$$

b) KCL Equations (20pts)

Write KCL @ Node V_{2} to find an equation in terms of the unknown nodal voltages of V_{1} through V_{3} (10pts)

$$
\begin{aligned}
& i_{1}+i_{3}=i_{2} \rightarrow \frac{v_{1}-v_{2}}{1}+3 v_{x}=\frac{v_{2}}{2} \\
& v_{x}=v_{2} \Rightarrow \frac{v_{1}-v_{2}}{1}+3 v_{2}=\frac{v_{2}}{2} \rightarrow\left\{\begin{array}{l}
v_{1}+1.5 v_{2}=0 \\
\text { or } \\
q+1.5 v_{2}=0 \\
\text { or } \\
v_{2}=-6 v
\end{array}\right.
\end{aligned}
$$

\qquad
ID no.: \qquad

Write KCL @ Node V_{3} to find an equation in terms of the unknown nodal voltages of V_{1} through V_{3} (10pts)

$$
\begin{aligned}
3 v_{x}+\frac{v_{3}}{2}=0 & \rightarrow 3 v_{2}+\frac{v_{3}}{2}=0 \\
& \Rightarrow v_{3}=-6 V_{2}=+36 V
\end{aligned}
$$

c) Solve V_{1} to V_{3} (3pts)

V_{1}	$9 v$
V_{2}	$-6 V$
V_{3}	+36 V

d) Find expressions for currents i_{1}, i_{2} and i_{3} in terms of V_{1} through V_{3} (12pts)

\boldsymbol{i}_{1}	$\sqrt{1}-\sqrt{2}$
\boldsymbol{i}_{2}	$\frac{\sqrt{2}}{2}$
\boldsymbol{i}_{3}	$3 \sqrt{2}$ or $-\frac{\sqrt{3}}{2}$

$$
\begin{aligned}
& i_{1}=\frac{v_{1}-v_{2}}{1} \quad i_{2}=\frac{v_{2}}{2} \\
& i_{3}=3 v_{2} \text { or } i_{3}=-\frac{v_{3}}{2}
\end{aligned}
$$

May $2^{\text {nd }}, 2018,12: 00 \mathrm{pm}$ to $12: 50 \mathrm{pm}$

Name
ID no. \qquad
e) Solve i_{1} through i_{3} (3pts)

$\boldsymbol{i}_{\mathbf{1}}$	15 A
\boldsymbol{i}_{2}	-3 A
\boldsymbol{i}_{3}	-18 A

\qquad
May $2^{\text {nd }}, 2018,12: 00 \mathrm{pm}$ to $12: 50 \mathrm{pm}$
ID no.: \qquad
PROBLEM 4: ${ }^{\text {points }} \mathbf{3 0}$
Find the Thevenin equivalent circuit at terminals AB by finding $V_{o c}$ and $I_{s c}$. $V_{o c} \equiv V_{a b}($ open $)$ Is $\equiv \operatorname{Iab}$ (Shatatob)

$V_{o c}$	20 V
$\boldsymbol{I}_{\boldsymbol{s c}}$	2.5 A
$\boldsymbol{V}_{\boldsymbol{T h}}$	20 V
$\boldsymbol{R}_{\boldsymbol{T h}}$	8Ω

* Method 1 for $V_{G C}$ (voltage divider):

$$
V_{T h}=V_{o L}=100 \cdot \frac{10}{50}=20 \mathrm{~V}
$$

* Method 2 for $V_{o c}(K V L)$:

$$
\begin{aligned}
& -100+50 i_{0}=0 \Rightarrow i_{0}=2 \mathrm{~A} \\
& V_{o L}=10 \cdot i_{0}=20 \mathrm{~V}
\end{aligned}
$$

$$
\begin{aligned}
& -100+40 I_{S C}=0 \Rightarrow I_{S C}=2.5 \mathrm{~A} \\
& R_{\pi L}=\frac{V_{O L}}{I_{S C}}=\frac{20}{2.5}=8 \Omega \\
& \text { Page 2 of 3. }
\end{aligned}
$$

\qquad
May $2^{\text {nd }}, 2018,12: 00 \mathrm{pm}$ to $12: 50 \mathrm{pm}$
ID no.: \qquad
PROBLEM 5: (10 points)
Find the Norton equivalent circuit at terminals AB by using the given Thevenin

${ }^{L_{1}}$	4 A
R_{n}	25Ω

$$
\begin{aligned}
& R_{N}=R_{\text {th }} \\
& I_{N}=V_{+h} / R_{t h}
\end{aligned}
$$

$$
\begin{aligned}
& I_{N}=\frac{V_{T h}}{R_{T h}}=\frac{100}{25}=4 \mathrm{~A} \\
& R_{N}=R_{T h}=25 \Omega
\end{aligned}
$$

