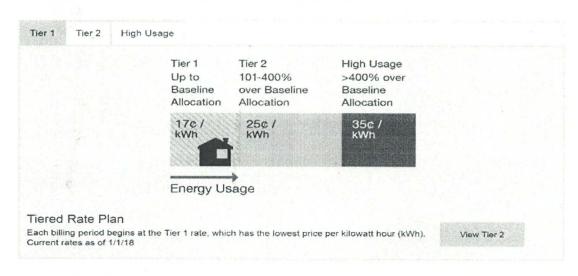
ID no.:

ANTMINER S9

World's Most Efficient Miner

PROBLEM 1: (10 points) BITCOIN MINING


What is the hourly profit or loss if you spend money only on electricity with the Antminer S9 to mine bitcoin? Show your work!

Hourly income (mining)= \cancel{c} 36

Hourly cost (electricity) = \cancel{c} 22.1

Hourly profit/loss (circle profit or loss) = ϕ <u>13.9</u>

- Hash Rate13TH/s (this is a measure of the number of hash "computations" per second the S9 can perform). Recall T=tera=10^12
- Power Consumption 1300W
- Assume Bitcoin Value of 10000\$
 Shown below is the Southern California Edison rate for electricity, current as of 5/1/2018.
 Assume your household is frugal with electricity usage, so you are in Tier 1.

I will calculate the number of hashes it takes to mine 1 bitcoin for you: The global hash rate (the combined computational capability of all active mining computers in the world) as of 5/1/2018 is 28,791,021,184 GH/s. # hashes to mine 1 bitcoin = global hash rate times ten minutes $/25 = (28,791,021,184*10^9 \text{ H/s})*(60 \text{ sec/min}) 10 \text{ min } /12.5 = (2.9*6/1.25)*10^(10+9+1+1-1) = approx. 1.3*10^21.$

So: 1.3 * 10^21 hashes earns one bitcoin. Use this to determine how many bitcoins per second the Antminer S9 mines, based on its hash rate of 13 TH/s. (H=hash T=Tera)

The electricity cost should be calculated based on the Antminer S9 power consumption of 1300 W.

ID no.:_____

PROBLEM 1:

Hourly income %

1 bitcoin = 1.3 x 10 21 H

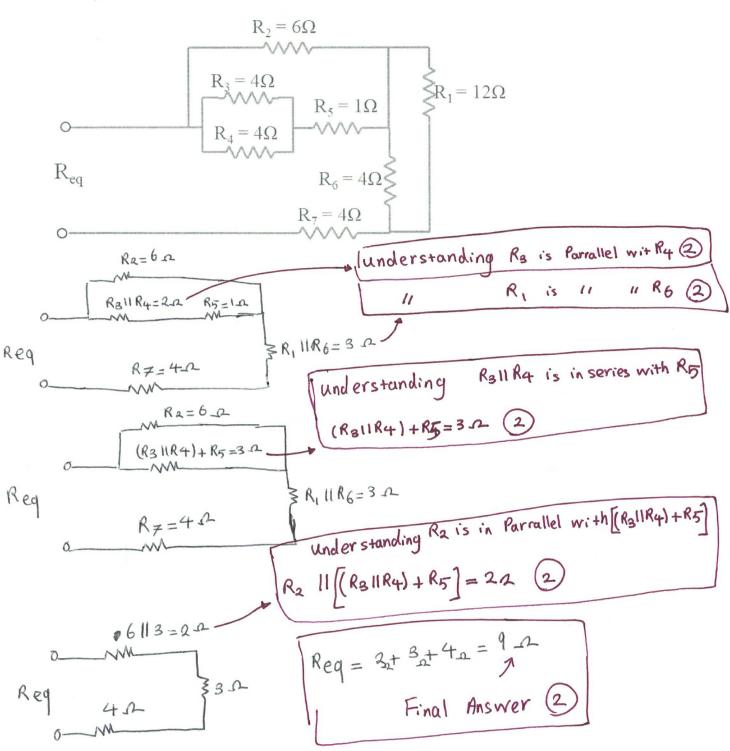
Antminer bitcoin earning rate =
$$\frac{13x^{10}}{1.3x^{10}} = \frac{10^{-8} \text{ bitcoin}}{5}$$

Bitcoin earned per hour = 6 8 x60x60 = 3.6 x 10 2

Hourly Cost

= 1.3 kW x
$$\frac{17¢}{kWH}$$
 = 22.1 $\frac{d}{dt}$ hour

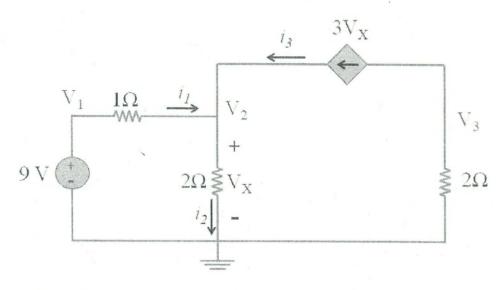
Hourly cost = 22.1¢


Name:

May 2nd, 2018, 12:00 pm to 12:50 pm

ID no.:_____

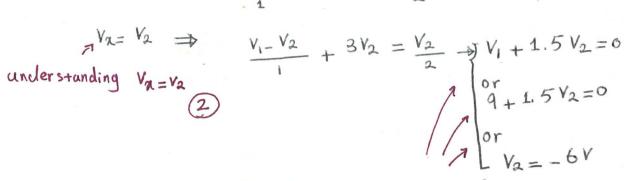
PROBLEM 2: (10 points)


Find Req:

ID no .:

PROBLEM 3: (40 points)

Use nodal analysis to find V₁ through V₃ and i₁ through i₃:



a) What is the value of V_1 (2pts)

b) KCL Equations (20pts)

Write KCL @ Node V₂ to find an equation in terms of the unknown nodal voltages of V₁ through V₃ (10pts)

$$V_{\chi} = V_2 \implies V_1 - V_2 \qquad 3V_2 = V_2 \implies V_1 + 1.5$$

ID no.:_____

Write KCL @ Node V_3 to find an equation in terms of the unknown nodal voltages of V_1 through V_3 (10pts)

$$3V_{\chi} + \frac{V_3}{2} = 0 \rightarrow 3V_2 + \frac{V_3}{2} = 6$$

$$\Rightarrow V_3 = -6V_2 = +36V$$

c) Solve V₁ to V₃ (3pts)

V_1	qv	1
V_2	-6Y	1
V_3	+36V	1

d) Find expressions for currents i_1 , i_2 and i_3 in terms of V_1 through V_3 (12pts)

i_1	V ₁ - V ₂	· ·
i_2	V2	
i_3	$3V_2 \text{ or } -\frac{V_3}{2}$	

$$i_1 = \frac{V_1 - V_2}{4}$$
 $i_2 = \frac{V_2}{2}$

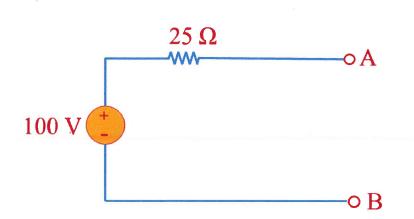
$$i_3 = 3 V_2$$
 or $i_3 = -\frac{V_3}{2}$

ID no.:_____

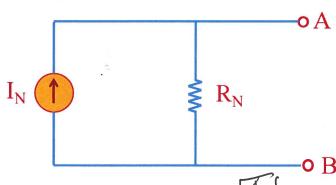
e) Solve i₁ through i₃ (3pts)

i_1	15 A	1
i_2	-3 A	1
i_3	-18A	1

EECS/CSE 70A Spring 2018 Midterm Exam #1 Name:	
May 2 nd , 2018, 12:00 pm to 12:50 pm ID no.: Professor Peter Burke	
PROBLEM 4: points) 30	
Find the Thevenin equivalent circuit at terminals AB by finding V_{oc} and I_{sc} . $Voc = Vab(open)$ Isc = Iab (Shape a tob)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
* Method 1 for Vez (voltage divider): Method 3:	
* Method 1 for Vez (voltage divider): Method 3: Voz = 100. 10 = 20V nodal analysis Zi for each en	; 10
* Method 2 for Voz (KVL): [2]	
$-100 + 50 i_0 = 0 \Rightarrow i_0 = 2A$	
$\int_{0}^{1} \sqrt{a} = 10 \cdot i_{0} = 20 \sqrt{2}$	
[2] 02 - 405- A [2] 1 N - 207	\
m= sz) (t)
2A D VIsc	
[8] B	
$-100 + 10 = 0 \Rightarrow I_{SC} = 2.5 \text{ A}$	
$V_{\overline{z}} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20}$	
$P_{TL} = \frac{\sqrt{82}}{I_{SC}} = \frac{2.5}{2.5} = \frac{8327}{2}$ Page 2 of 3. $\frac{1}{2}$	
14) or 401110	


Name:____

May 2nd, 2018, 12:00 pm to 12:50 pm Professor Peter Burke


ID no.:_____

PROBLEM 5: (10 points)

Find the Norton equivalent circuit at terminals AB by using the given Thevenin circuit.

I _N	4-A
R_N	25 52

$$I_{N} = \frac{V_{Th}}{R} = \frac{100}{25} = 4A$$