EECS/CSE 70A Network Analysis I

Homework \#5

Due on or before 5/22/2018, Tuesday at 5:00PM

(You can submit homework in either of the discussion sessions only on Tuesday 5/22 or put it in the box near EH 4404 on 5/22 by 5:00PM)

Problem 1: (10 pts)
$\mathrm{u}=\frac{A+j B}{C+j D}$
A, B, C, and D are real.
a) Find $\operatorname{Re}(u)$
b) Find $\operatorname{Im}(u)$
c) Express uas $(\mathrm{X}+\mathrm{jY})$
d) Express uas $\left(r e^{j \theta}\right)$
e) Find $\operatorname{Re}\left(u e^{j \omega t}\right)$

Problem 2a: (10 pts)

Given $v(t)=10 \cos (\omega t-\pi / 4)$ volts. Find the phasor \mathbf{V} that represents $v(t)$. Express \mathbf{V} as both $\mathrm{x}+\mathrm{jy}$ and $\mathrm{r} \mathrm{e}^{j \theta}$.

Problem 2b: (10 pts)

Given $i(t)=2 \sin (5 t+\pi / 6)$ amps. Find the phasor I that represents $i(t)$. Express I as both $\mathrm{x}+\mathrm{jy}$ and $\mathrm{r} \mathrm{e}^{j \theta}$.

Problem 3a: (10 pts)
Find the impedance $Z_{\text {eq }}$ if L is the inductance, C is the capacitance, and R is the resistance. No need to simplify your answer as $\mathrm{x}+\mathrm{jy}$ or $r e^{j \theta}$.

Problem 3b: (10 pts)
Find the impedance $Z_{\text {eq }}$ if L is the inductance, C is the capacitance, and R is the resistance. No need to simplify your answer as $\mathrm{x}+\mathrm{jy}$ or $r e^{j \theta}$.

Problem 3c: (10 pts)
Find the impedance $Z_{e q}$ if $f=1 \mathrm{MHz}$. Express the answer as both $x+j y$ and $r e^{j \theta}$.

Problem 3d: (10 pts)
Find the impedance $Z_{\text {eq }}$ if $f=1 \mathrm{MHz}$. Express the answer as both $\mathrm{x}+\mathrm{jy}$ and $\mathrm{r} e^{j \theta}$.

Problem 4a: (10 pts)

Given $Z=3 \angle 10^{\circ}$ ohms. Find $\mathrm{i}(\mathrm{t})$ if $\mathrm{v}(\mathrm{t})=8 \cos (2 \mathrm{t}+\pi / 4)$ volts.

Problem 4b: (10 pts)

Given $Z=3 \angle 10^{\circ}$ ohms. Find $v(t)$ if $i(t)=4 \cos (20 t-\pi / 3)$ amps.

Problem 5a: (10pts)

Find $\mathrm{i}_{\mathrm{C}}(\mathrm{t})$. Hint: convert the voltage source into a phasor, then find the current phasor for the capacitor, then convert back to $i_{c}(t)$.
$V_{s}(t)=100 \cos \left(40 t+30^{\circ}\right)$ volts

Problem 5b: (10pts)

Find $i_{L}(t)$. Hint: convert the voltage source into a phasor, then find the current phasor for the inductor, then convert back to $i_{L}(t)$.
$V_{s}(t)=60 \cos \left(10 t+45^{\circ}\right)$ volts

