EECS/CSE 70A Network Analysis I

Homework #6

Due on or before Thursday 6/7/2018 at 10:00AM

(You can submit your homework in any of the discussion sessions only on either Tuesday 6/5 or Thursday 6/7) Problem 1: (10 pts)

For the circuit shown below, find i(t), $v_L(t)$, $v_C(t)$ and $v_R(t)$.

Problem 2: (10 pts)

Determine the type of the filter shown below based on C, R_1 and R_2 . Plot $V_{out}(t)$ versus $V_{in}(t)$ for $\omega \rightarrow 0$ and $\omega \rightarrow \infty$.

Problem 3a: (10 pts)

Find the transfer function $H(\omega)$, $|H(\omega)|$ and $\angle H(\omega)$.

Plot $|H(\omega)|$ on linear-linear and log-log scales.

Plot $\angle H(\omega)$ on linear-log scales.

Problem 3b: (10 pts)

Find the transfer function $H(\omega)$, $|H(\omega)|$ and $\angle H(\omega)$.

Plot $|H(\omega)|$ on linear-linear and log-log scales.

Plot $\angle H(\omega)$ on linear-log scales.

Problem 4: (10 pts)

Find the transfer function $H(\omega)$, $|H(\omega)|$ and $\angle H(\omega)$.

Plot $|H(\omega)|$ on linear-linear and log-log scales.

Plot $\angle H(\omega)$ on linear-log scales.

Problem 5: (10pts) For f = 1, 10, 100, 1k, 10k, and 100k Hz, find the output voltage as $V_{out}(t) = A \cos(2\pi f t + \phi)$ where ϕ is the phase if the input voltage is $V_{in}(t) = 10 \cos(2\pi f t + \pi/3)$

Problem 6: (10pts)

Find the output voltage as

 $V_{out}(t) = A \cos(2\pi f t + \phi)$ where ϕ is the phase if the input voltage is $V_{in}(t) = 10\Sigma_i \cos(2\pi f_i t + \pi/3), f_i = 1, 10, 100, 1k, 10k, and 100k Hz$

Problem 7: (10pts)

Sketch the Bode plot (magnitude only) for the following transfer function. $H(\omega) = 1/((1+j\omega\tau) \cdot (1+j\omega\tau))$