EECS/CSE 70A Network Analysis I

Homework \#6

Due on or before
 Thursday 6/7/2018 at 10:00AM

(You can submit your homework in any of the discussion sessions only on either Tuesday $6 / 5$ or Thursday 6/7)

Problem 1: (10 pts)
For the circuit shown below, find $i(t), v_{L}(t), v_{C}(t)$ and $v_{R}(t)$.
$\xrightarrow{i(t)}$
$\mathrm{v}_{\mathrm{s}}(\mathrm{t})=4 \cos \left(100 \mathrm{t}+60^{\circ}\right)$ volts

Problem 2: (10 pts)
Determine the type of the filter shown below based on C, R_{1} and R_{2}. Plot $\mathrm{V}_{\text {out }}(\mathrm{t})$ versus $\mathrm{V}_{\text {in }}(\mathrm{t})$ for $\omega \rightarrow 0$ and $\omega \rightarrow \infty$.

Problem 3a: (10 pts)
Find the transfer function $H(\omega),|H(\omega)|$ and $\angle H(\omega)$.
Plot $|H(\omega)|$ on linear-linear and log-log scales.
Plot $\angle H(\omega)$ on linear-log scales.

Problem 3b: (10 pts)
Find the transfer function $H(\omega),|H(\omega)|$ and $\angle H(\omega)$.
Plot $|H(\omega)|$ on linear-linear and log-log scales.
Plot $\angle H(\omega)$ on linear-log scales.

Problem 4: (10 pts)
Find the transfer function $H(\omega),|H(\omega)|$ and $\angle H(\omega)$.
Plot $|H(\omega)|$ on linear-linear and log-log scales.
Plot $\angle H(\omega)$ on linear-log scales.

Problem 5: (10pts)
For $f=1,10,100,1 \mathrm{k}, 10 \mathrm{k}$, and 100 k Hz , find the output voltage as
$V_{\text {out }}(\mathrm{t})=\mathrm{A} \cos (2 \pi f t+\phi)$ where ϕ is the phase if the input voltage is $V_{\text {in }}(t)=10 \cos (2 \pi f t+\pi / 3)$

Problem 6: (10pts)
Find the output voltage as
$V_{\text {out }}(\mathrm{t})=\mathrm{A} \cos (2 \pi f t+\phi)$ where ϕ is the phase if the input voltage is $\mathrm{V}_{\mathrm{in}}(\mathrm{t})=10 \sum_{\mathrm{i}} \cos \left(2 \pi f_{i} t+\pi / 3\right), f_{i}=1,10,100,1 \mathrm{k}, 10 \mathrm{k}$, and 100 k Hz

Problem 7: (10pts)
Sketch the Bode plot (magnitude only) for the following transfer function.
$H(\omega)=1 /((1+j \omega \tau) \cdot(1+j \omega \tau))$

