EECS/CSE 70A Network Analysis I

Homework \#1

Due on or before
4/12/2018, Thursday 11 am at ELH 110

Problem 1: Find the power absorbed or supplied by each element. (2 pts)

Solution:
$\mathrm{P}_{1}=\mathrm{V}_{\mathrm{ab}} \mathrm{I}_{1}$ and $\mathrm{P}_{2}=\mathrm{V}_{\mathrm{ab}} \mathrm{I}_{2}$
$\rightarrow \mathrm{P}_{1}=(2 \mathrm{~V}) \mathrm{x}(1 \mathrm{~A})=2 \mathrm{~W} 0.5$ and $\mathrm{P}_{2}=(2 \mathrm{~V}) \mathrm{x}(-3 \mathrm{~A})=-6 \mathrm{~W} 0.5$
$\mathrm{P}_{1}>0$, therefore the element is a power sink (it absorbs power), $0.5 \mathrm{P}_{2}<0$, therefore the element is a power source (it supplies power) 0.5

Problem 2: Find the power absorbed or supplied by each element. (2 pts)

Solution:
$\mathrm{P}_{1}=\mathrm{V}_{\mathrm{ab}}\left(-\mathrm{I}_{1}\right)$ and $\mathrm{P}_{2}=\mathrm{V}_{\mathrm{ab}}\left(-\mathrm{I}_{2}\right)$
$\rightarrow \mathrm{P}_{1}=(1 \mathrm{~V}) \mathrm{x}(-5 \mathrm{~A})=-5 \mathrm{~W} 0.5$ and $\mathrm{P}_{2}=(1 \mathrm{~V}) \mathrm{x}(-2 \mathrm{~A})=-2 \mathrm{~W} 0.5$
$\mathrm{P}<0$, therefore both elements are power source (they
supply power) 1

Problem 3: Find the current I_{3} and I_{5} flowing through elements 3 and 5. (2 pts)

Solution:

$$
\begin{aligned}
& \mathrm{I}_{\text {total }}=\mathrm{I}_{2}+\mathrm{I}_{3} \rightarrow 4 \mathrm{~A}=2 \mathrm{~A}+\mathrm{I}_{3} \rightarrow \mathrm{I}_{3}=2 \mathrm{~A}, 1 \\
& \mathrm{I}_{3}=\mathrm{I}_{4}+\mathrm{I}_{5} \rightarrow \mathrm{I}_{5}=2 \mathrm{~A}-1 \mathrm{~A}=1 \mathrm{~A}, 1
\end{aligned}
$$

Problem 4: (4pts)
a) Find I_{2}
b) Find the power absorbed or supplied by each element.
c) Is element 1 a source or a sink? Repeat for elements 2,3 and 4 .

Solution:

(a) $\mathrm{I}_{2}=\mathrm{I}_{1}+\mathrm{I}_{4}-\mathrm{I}_{3} \rightarrow \mathrm{I}_{2}=4 \mathrm{~A}+5 \mathrm{~A}-2 \mathrm{~A}=7 \mathrm{~A}$
(b)
$P_{1}=V_{1} I_{1} \rightarrow P_{1}=9 V \times(-4 A)=-36 W$ (supplied).
Similarly:
$\mathrm{P}_{2}=9 \mathrm{~V} \times 7 \mathrm{~A}=63 \mathrm{~W}$ (absorbed) 0.5
$\mathrm{P}_{3}=9 \mathrm{~V} \times 2 \mathrm{~A}=18 \mathrm{~W}$ (absorbed) 0.5
$\mathrm{P}_{4}=9 \mathrm{~V} \times(-5 \mathrm{~A})=-45 \mathrm{~W}$ (supplied) 0.5
(c) Power is positive for elements 2 and 3,
negative for elements 1 and 4 . Thus 1 and 4 are power source. 0.5 Elements 2 and 3 are power sinks. 0.5

