EECS/CSE 70A Network Analysis I

Homework #1

Due on or before 4/12/2018, Thursday 11 am at ELH 110 Problem 1: Find the power absorbed or supplied by each element. (2 pts)

Solution: $P_1 = V_{ab}I_1$ and $P_2 = V_{ab}I_2$ $\rightarrow P_1 = (2V)x(1A) = 2W$ 0.5 and $P_2 = (2V)x(-3A) = -6W$ 0.5 $P_1 > 0$, therefore the element is a power sink (it absorbs power), 0.5 $P_2 < 0$, therefore the element is a power source (it supplies power) 0.5

Problem 2: Find the power absorbed or supplied by each element. (2 pts)

Solution:

$$P_1 = V_{ab}(-I_1) \text{ and } P_2 = V_{ab}(-I_2)$$

 $\rightarrow P_1 = (1V)x(-5A) = -5W$ 0.5 and $P_2 = (1V)x(-2A) = -2W$ 0.5

P < 0, therefore both elements are power source (they supply power) 1

Problem 3: Find the current I_3 and I_5 flowing through elements 3 and 5. (2 pts)

Solution:

 $I_{total} = I_2 + I_3 \rightarrow 4A = 2A + I_3 \rightarrow I_3 = 2A$

 $I_3 = I_4 + I_5 \rightarrow I_5 = 2A - 1A = 1A$ 1

Problem 4: (4pts)

a) Find I_2

b) Find the power absorbed or supplied by each element.

c) Is element 1 a source or a sink? Repeat for elements 2, 3 and 4.

 $V_{1} = 9V \begin{bmatrix} 1 \\ - \end{bmatrix} \xrightarrow{-} V_{1} = \begin{bmatrix} 4A \\ 2 \\ 0 \end{bmatrix} \xrightarrow{-} \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$

Solution:
(a)
$$I_2 = I_1 + I_4 - I_3 \rightarrow I_2 = 4A + 5A - 2A = 7A$$
 [1]
(b)
 $P_1 = V_1I_1 \rightarrow P_1 = 9V \times (-4A) = -36W$ (supplied).
Similarly:
 $P_2 = 9V \times 7A = 63W$ (absorbed) [0.5]
 $P_3 = 9V \times 2A = 18W$ (absorbed) [0.5]
 $P_4 = 9V \times (-5A) = -45W$ (supplied) [0.5]
(c) Power is positive for elements 2 and 3,
negative for elements 1 and 4. Thus 1 and 4 are
power source. [0.5] Elements 2 and 3 are power
sinks. [0.5]